Responsive image
博碩士論文 etd-0801111-144842 詳細資訊
Title page for etd-0801111-144842
論文名稱
Title
鋅錫奈米薄膜非揮發性記憶體元件之製程及特性分析
Fabrications and Characteristic of Nonvolatile Memory Devices with Zn and Sn nano Thin Film MIS Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-24
繳交日期
Date of Submission
2011-08-01
關鍵字
Keywords
奈米點、超臨界二氧化碳、非揮發性記憶體、錫、鋅
Zn, Supercritical CO2 fluid (SCCO2), Deep Level Transient Spectroscopy (DLTS), Sn, nanocrystals, Non-volatile memory device
統計
Statistics
本論文已被瀏覽 5637 次,被下載 8
The thesis/dissertation has been browsed 5637 times, has been downloaded 8 times.
中文摘要
非揮發性記憶體寫入資料,即不需外界電力來維持其記憶,且其低功耗的特點,更適合作為使用電池的攜帶型電子產品。目前所使用之非揮發性記憶體,其製程需長時間的高溫熱處理,這對產能和製造費用都是一項負擔,因此降低製程溫度是絕對必要的趨勢。而近來有利用超臨界二氧化碳流體之氧化處理法,可有效降低熱處理製程溫度。本論文利用傳統熱退火以及超臨界二氧化碳製成非揮發性記憶元件並分析其特性。
本論文使用Zn與Sn和SiO2之混合層,來降低製程溫度,並利用氧化鋅與氧化錫本身缺陷作電荷儲存之浮閘層,來製作奈米薄膜非揮發性記憶體。鋅和錫係理論上作為低熔點金屬模型材料,為確定Zn和Sn的共鍍之產物是否能成功製作奈米材料元件,首先利用一般傳統的快速熱退火技術製作。在矽晶圓穿隧氧化層上沈積共鍍Zn+Sn+SiO2的薄膜,在後續不同溫度的熱處理狀況下使奈米氧化鋅與氧化錫析出,再藉由電容-電壓(C-V)量測來分析其電性及材料性質的變化。當電子注入奈米薄膜氧化層之後,元件之起始電壓會發生偏移,此偏移的量即定義為記憶體元件的記憶窗,即確認有奈米結構非揮發性記憶體元件的特性。本論文利用超臨界二氧化碳流體技術,研究儲存層中不同的鋅、錫摻雜含量之記憶效應和CV電性分析以及DLTS分析此儲存層缺陷特性、電荷儲存能力。實驗證實無論電荷是從閘極注入亦或穿隧氧化層注入,其深淺缺陷之峰值的位置皆相同,且超臨界二氧化碳流體製程鋅與錫合金具有明顯記憶特性,發現鋅有助於氧化錫深能階缺陷之儲存能力。DLTS發現有一新的species存在0.93 eV處,具有較低之活化能,加強電荷儲存能力。由XPS與DLTS分析得知不同Zn、ZnO、Zn-O-Si與Sn、SnO深能階缺陷形成電荷儲存機制。證明本論文所提出的鋅與錫合金之超臨界二氧化碳流體製程是有前瞻性的,以低溫製程特性佳之奈米點記憶體元件。
Abstract
Non-volatile memory can keep the data without supplying power, and it is suitable for portable electronic products due to the advantage of low power consumption. In current industrial production, high-temperature and long-time process are necessary for the fabrication of non-volatile memory, which are heavy loadings on production capacity and lots cost. Therefore, decreasing the temperature of the process is a trend. Recently using the oxidation treatment of supercritical carbon dioxide fluid can efficiently decrease the temperature of the process.
In this thesis, the mixture layer of Zn, Sn, and SiO2 is applied to reduce the temperature of process, and to employ the defects of ZnO and SnO2 as floating gate for electron storage to fabricate the nonvolatile memory device. Zn and Sn are applied due to the low temperature melting points. To ensure the layer of cosputtering with Zn and Sn to be able to successfully fabricate as nano material device, the process of traditional rapid temperature annealing treatment was applied for first step.
The co-sputtered Zn-Sn-SiO2 thin film was deposited on the tunneling oxide layer, and then the thin film was treated with varied annealing temperature to precipitate ZnO and SnO2 nanocrystals. After that, the C-V measurement is applied to analyze the change of the electrical and material properties. Using a positive bias, the electrons are injected into the oxide layer, by the threshold voltage the offset is occurred, which is defined as the memory window of the memory effect, and the property of nonvolatile memory will be applied. In addition, no matter the charge is injected from the gate oxide or tunnel oxide, the defects position of DLTS’s peak is with the same property.
The supercritical carbon dioxide fluid technology has been performed to study the memory effect. The capability of electron injection, storages and the defect, in the storage layer were studied by the C-V measurement and DLTS. The experiment confirmed that the Zn-Sn alloy has the memory property after it been treated by the supercritical carbon dioxide fluid technology. It has shown that Zn can promote to the storage capability ability due to the formation of deep level defects of SnO2 from the DLTS spectra. A new species is found at 0.93 eV with low activation energy and high capability of electron storage. The defect formation mechanism of Zn, ZnO, Zn-O-Si, Sn, and SnO are analyzed by found by the XPS and DLTS. The device fabrication using Zn-Si alloy and supercritical carbon dioxide fluid technology has the potential to reduce the process temperature and to improve the memory property of nonvolatile memory device.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 非揮發性記憶體介紹 3
1.3 超臨界二氧化碳介紹 6
第二章 能帶理論與深能階暫態能譜原理 10
2.1 非揮發性記憶體工作原理 10
2.1.1. 快閃記憶體之寫入與抹除原理 10
2.1.2. 穿隧機制 10
2.2 深能階暫態能譜量測原理 12
2.2.1. Shockley-Read-Hall 復合理論[34] 13
2.2.2. 脈衝電壓與介面缺陷行為 15
2.2.3. 缺陷參數決定 15
第三章 實驗:鋅錫之非揮發性記憶體元件之製作及分析 22
3.1 鋅錫之記憶體元件之製作 22
3.2 深能階暫態頻譜量測 24
第四章 結果與討論 30
4.1 二氧化矽缺陷研究 30
4.1.1 退火溫度對二氧化矽缺陷影響 31
4.1.2 超臨界二氧化碳處理對二氧化矽缺陷影響 31
4.2 奈米薄膜儲存特性研究 32
4.2.1 退火溫度對記憶效應影響 32
4.2.2 鋅錫比例對記憶效應影響 33
4.2.3 超臨界二氧化碳處理製作奈米點 34
4.3 以深能階暫態頻譜研究缺陷儲存機制 35
第五章 結論 71
第六章 參考資料 72
參考文獻 References
[1] S. Lai, “Future Trends of Nonvolatile Memory Technology”, California Technology and Manufacturing, New York (2001).
[2] S. Aritome, “Advanced Flash Memory Technology and Trends for File Storage Application,” IEEE IEDM Tech. Dig., 763-766, (2000).
[3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, 85, 1248–1271, (1997).
[4] R. Bez, E. Camerlenghi, ,A. Modelli, A. Visconti, "Introduction to flash memory". Proc. IEEE 91 (4): 489–502. (2003).
[5] A. S. Prasad, "Zinc deficiency", British. Med. J. , 326, 22 (2003)
[6] "Zinc: World Mine Production (zinc content of concentrate) by Country", 2006 Minerals Yearbook: Zinc (Washington, D.C.: United States Geological Survey): 16. Table 15, February 2008.
[7] Zheng Chen, Zhiwei Shan, M S Cao, Lei Lu and Scott X Mao, “Zinc oxide nanotetrapod”, Nanotechnology 15, 365–36 (2004) .
[8] Frank C. Porter, “Corrosion Resistance of Zinc and Zinc Alloys”, CRC Press, New York, 121 (1994).
[9] U. Ozgur, I. Alivov, Ya, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkocd, "A comprehensive review of ZnO materials and devices". J. Appl. Phys. 98, 041301 (2005).
[10] D.C. Look, J.W. Hemsky, J.R. Sizelove, "Residual Native Shallow Donor in ZnO". Phys. Rev. Lett. 82, 2552–2555 (1999).
[11] D. Look, "Recent advances in ZnO materials and devices". Mate. Sci. Eng. B 80, 383 (2001).
[12] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288 (1967).
[13] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[14] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, Part A, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 20, 190 -195, (1997).
[15] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W Chan, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE IEDM Tech. Dig., 95, 521-524, (1995).
[16] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 95, 521 (1995).
[17] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, Savatore A.Lombardo, Domenico Corso, Cristina Plantamura, Stella Serafino, Giuseppe Ammendola, Michiel van Duuren, Pierre Goarin, Wan Yuet Mei, Kees van der Jeugd, Thierry Baron, Marc Gely, Pierre Mur, and Simon Deleonibus, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS),” IEEE Trans. Device Mater. Reliab., Vol.4, No. 3, pp.377-389, (2004).
[18] Y. Shi et al., “Proceedings of the First Joint Symposium on Opto- and Microelectronic Devices and Circuits”, 142–145, (2000).
[19] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang, “Microelectron”. J. 34, 71 (2003).
[20] Jiun-Yi Tseng, Cheng-Wei Cheng, Sheng-Yu Wang, Tai-Bor Wu, Kuang-Yeu Hsieh, and Rich Liu, “Memory characteristics of Pt nanocrystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures.” Appl. Phys. Lett. 85, 2595 (2004)
[21] Zerlinda Tan, S. K. Samanta, Won Jong Yoo, and Sungjoo Lee, “Self-assembly of Ni nanocrystals on HfO2 and N-assisted Ni confinement for nonvolatile memory application” Appl. Phys. Lett. 86, 013107 (2004)
[22] Wei-Ren Chen, Ting-Chang Chang, Po-Tsun Liu, Po-Sun Lin, Chun-Hao Tu, and Chun-Yen Chang, “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application” Appl. Phys. Lett. 90, 112108 (2007).
[23] Chungho Lee, Udayan Ganguly, Venkat Narayanan, and Tuo-Hung Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, 26, 879-881, (2005).
[24] Shan Tang, Chuanbin Mao, Yueran Liu, and Sanjay K. Banerjee “Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication”, IEEE Trans. on Electron Letters, 54, 433, (2007).
[25] C. Cagniard de la Tour, Ann. Chim. Phys., 21 (1822) 127, 178.
[26] V. Dostal, M.J. Driscoll, P. Hejzlar, "A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors", MIT-ANP-Series, MIT-ANP-TR-100, New York (2004).
[27] 朱自強, “超臨界流體技術原理和應用”, 化學工業出版社 北京(2000).
[28] K.A. Abbas, A. Mohamed, A.S. Abdulamir, H.A. Abas, "A Review on Supercritical Fluid Extraction as New Analytical Method" Am. J. Biochem. & Biotech., 4, 345-353, (2008).
[29] C. J. Bart, "Additives in Polymers: industrial analysis and applications". John Wiley and Sons. Chapter 4: Separation Techniques, New York, 212 (2005).
[30] K. Stephen and K. Lucas, “Viscosity of Dense Fluids”, Plenum, New York (1979).
[31] Qingyong Lang and Chien M. Wai "Supercritical fluid extraction in herbal and natural product studies — a practical review" Talanta 53,771–782 (2001)
[32] Donald A. Neamen, “Semiconductor Physics and Device, basic principles”, third edition, Mc Graw Hill, New York, 450-471 (2003).
[33] Stanley. Wolf., “Silicon Processing For The VLSI Era Volume 3:The Submicron MOSFET, ” Lattice Press, Press, Sunset Beach, California, ch.5, (1986).
[34] D. V. Lang, “Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors, ” J. Appl. Phys. 45, 3023 (1974)
[35] W. Shockley, W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Phys. Rev. 87, 835–842 (1952).
[36] Kimiyoshi Yamasaki, Minoru Yoshida and Takuo Sugano, “Deep Level Transient Spectroscopy of Bulk Traps and Interface States in Si MOS Diodes.” Jpn. J. Appl. Phys. 18, 113-12 (1979).
[37] H. Amekura and N. Kishimoto, “Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation.” Springer, New York, 5, 33-34 (2009).
[38] 郭維廉, “硅-二氧化硅介面物理”, 國防工業出版社(1982).
[39] Eiichi Kondohy, Kenji Sasaki, and Yoichi Nabetani ,“Deposition of Zinc Oxide Thin Films in Supercritical Carbon Dioxide Solutions”, Appl. Phys. Express 1, 061201 (2008).
[40] H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, and N. Kishimoto ,“Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence”, Appl. Phys. Lett. 88, 153119 (2006)
[41] C. Liu, T. Mihara, T. Matsutani, T. Asanuma, M. Kiuchi, “Preparation and characterization of indium tin oxide films formed by oxygen ion beam assisted deposition”, Solid State Communications 126, 509–513 (2003).
[42] L. S. Dake, D. R. Baer, J. M. Zachara, “Auger parameter measurements of zinc compounds relevant to zinc transport in the environment”, Surf. Interface Anal. 14, 71 (1989).
[43] 陳昭宇,“錫奈米薄膜非揮發性記憶體元件之製程及特性分析”,國立中山大學機械與機電工程學系碩士論文,2009
[44] 陳昭宇,”鋅奈米薄膜非揮發性記憶體元件之製程及特性分析”,國立中山大學機械與機電工程學系碩士論文,2010
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code