Responsive image
博碩士論文 etd-0801111-233059 詳細資訊
Title page for etd-0801111-233059
論文名稱
Title
飽和吸收體摻雜石墨烯被動鎖模之研究
Passively Mode-Locked Lasers Using Graphene Based Saturable Absorber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-08-01
關鍵字
Keywords
被動鎖模、飽和吸收體、石墨烯
passively mode-locked laser, graphene, saturable absorber
統計
Statistics
本論文已被瀏覽 5674 次,被下載 1008
The thesis/dissertation has been browsed 5674 times, has been downloaded 1008 times.
中文摘要
本論文為石墨烯飽和吸收體應用於被動鎖模雷射之研究,利用兩種不同製程的飽和吸收體,包括均勻分散於高分子基材中的石墨烯薄片及結晶層狀石墨烯皆可獲得短脈衝光纖雷射,石墨烯薄片及結晶層狀石墨烯飽和吸收體(21層)可分別獲得最短脈衝寬度為403fs及 432fs,脈衝時間寬度-頻寬乘積分別為0.315及0.329,皆與理論的最小值0.315相近,表示脈衝壓縮已接近極限。比較兩種不同石墨烯飽和吸收體的實驗結果可觀察到分散的石墨烯片之飽和吸收體因分散不均造成聚集使得線性損耗增加,以及造成散射,使得起始鎖模功率增高,而結晶層狀的石墨烯為整齊原子排列,穿透率高,製程及鎖模結果較穩定。
比較相同製程單壁奈米碳管飽及石墨烯飽和吸收體之特性,線性吸收頻譜顯示石墨烯有寬波段吸收特性,而奈米碳管之吸收波段對應碳管直徑大小。量測結果發現在相近的線性損耗與調制深度下,單壁奈米碳管飽和吸收體濃度0.5wt%與厚度188μm之試片可得到光譜寬6nm及最短的脈衝寬440fs,而石墨烯薄片飽和吸收體濃6.25wt%與厚度18μm之試片量測結果具有更短的脈衝寬度約403fs。
利用石墨烯材料可製作低成本和製程簡單之飽和吸收體,其寬波段的吸收特性、超快速的回復時間及較大的調制深度使石墨烯成為極具應用潛力的鎖模雷射飽和吸收體材料。
Abstract
The graphene-polymer SA thin film using solution blending method and atomic layer graphene as saturable absorber (SA) used to generate femtosecond laser pulse were measured. Stable soliton-like pulses with the pulsewidth of 403 fs and 432 fs, the spectral linewidth of 6.32 nm and 6.16 nm, and the time-bandwidth product of 0.315 and 0.329 using graphene-PVA film and atomic layer graphene as SA were achieved, respectively, in mode-locked Er-doped fiber ring laser. The graphene-PVA SA suffered from larger loss caused by graphene flake aggregating, while the atomic layer graphene had smaller nonsaturable loss which exhibited lower mode locking threshold power. Atomic layer graphene also had stable fabricated process and controllable modulation depth depended on its layer numbers.
To compare the mode locking performance of single wall carbon nanotubes (SWCNTs) and graphene SA, the same solution blending fabricated sample was used. Under similar nonsaturable loss and modulation depth, the SWCNTs SA with optimized concentration of 0.5wt% and thickness of 188μm had shortest pulsewidth of 440 fs and 3-dB spectral linewidth of 6 nm. The shortest pulsewidth of 403 fs and broad spectral linewidth of 6.32 nm was obtained using graphene SA with concentration of 6.25wt% and thickness of 18μm.
Graphene has broad band absorbance and larger modulation depth, the experimental result indicates that graphene SA can generate shorter pulse and has chance to become the potential candidate of SA.
目次 Table of Contents
中文摘要 I
ABSTRACT II
致謝 III
內容目錄 IV
圖目錄 VII
表目錄 X
第1章 導論 1
1.1 研究目的 1
1.2 論文架構 4
第2章 被動鎖模雷射原理 5
2.1 鎖模原理 5
2.2 被動鎖模原理 9
2.2.1 飽和吸收體非線性吸收特性 9
2.2.2 被動鎖模雷射脈衝產生機制 11
2.2.3 自相位調變對脈衝波形之影響 13
2.2.4 群速色散與對脈衝波形之影響 14
2.3 飽和吸收體簡介 16
2.3.1 半導體飽和吸收鏡 16
2.3.2 單壁奈米碳管飽和吸收體 18
2.3.3 石墨烯飽和吸收體 22
第3章 石墨烯飽和吸收體製程 24
3.1 石墨烯簡介 24
3.1.1 石墨烯結構與特性 24
3.1.2 石墨烯的飽和吸收機制 26
3.2 摻雜石墨烯飽和吸收體製備 29
3.2.1 石墨烯-高分子材料飽和吸收體薄膜 29
3.2.2 結晶層狀石墨烯飽和吸收體 32
3.3 石墨烯飽和吸收體光學特性 35
3.3.1 飽和吸收體線性吸收特性 35
3.3.2 飽和吸收體非線性穿透特性 38
第4章 被動鎖模雷射實驗架構與量測 40
4.1 摻鉺光纖環型雷射架構 40
4.2 自相關儀脈衝寬度量測原理 42
4.3 鎖模雷射實驗及量測結果 44
4.3.1 光譜及脈衝量測 44
4.3.2 鎖模雷射脈衝之結果與討論 52
第5章 結論 57
5.1 結論 57
5.2 未來方向 58
參考資料 59

參考文獻 References
[1] H. A. Haus, “ Mode-Locking of Lasers”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1173-1185 (2000).
[2] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari “Graphene photonics and optoelectronics”, Nature Photonics, 4, 611 (2010).
[3] 楊國輝, 黃宏彥, 雷射原理與量測概論, 五南出版社 (2008)
[4] A. M. Weiner, Ultrafast Optics, Wiley, New Jersey (2009)
[5] C. Rulliere, Femtosecond Laser Pulses: Principles and Experiments, Springer, New York (1998)
[6] 閻吉祥, 雷射原理與技術, 新文京開發出版社 (2007)
[7] E. Garmire, “Resonant Optical Nonlinearities in Semiconductors”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1094-1110 (2000)
[8] 邱金城, “奈米碳管飽和吸收體增強鎖模雷射非線性自相位調變之研究,” 國立中山大學博士論文 (2010).
[9] H. A. Haus, “Theory of Mode Locking with a Fast Saturable Absorber”, J. Appl. Phys., vol. 46, pp. 3049-3058 (1975)
[10] Franz X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu, Chap.1 (2006).
[11] http://www.batop.de/information/SAM_infos.html
[12] Franz X. Kaertner, “Semiconductor Saturable Absorbers,” physics.gatech.edu, Chap.8 (2006).
[13] 陳璽中, “奈米碳管飽和吸收體濃度對鎖模脈衝光波形的影響之研究,” 國立中山大學碩士論文 (2010)
[14] N. Onodera et. al., “Frequency multiplication in actively mode locked semiconductor lasers,” Appl. Phys. Lett., 62, 1329 (1993).
[15] 成會明, 奈米碳管, 五南出版社 (2004)
[16] N. Grossiord, O. Regev, J. Loos, J. Meuldijk, and C. E. Koning, “Time-Dependent Study of the Exfoliation Process of Carbon Nanotubes in Aqueous Dispersions by Using UV-Visible Spectroscopy”, Anal. Chem, vol. 77, pp. 5135-5139 (2005)
[17] R. Bruce Weisman, Sergei M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot”, Nano Lett., 3, 1235 (2003)
[18] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant DefinesVisual Transparency of Graphene”, Science, 320, 1308 (2008)
[19] Y.-C. Chen, N. R. Raravikar, L. S. Schadler, and P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 mm”, Appl. Phys. 81, 975–977 (2002).
[20] Ryan W. Newson, Jesse Dean, Ben Schmidt, and Henry M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films” Optics Express, 17, 2326 (2009)
[21] F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite”phys. stat. sol. (b) 245, pp.2319-2322 (2008)
[22] F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser”, Nature Nanotechnology 3, pp. 738-742 (2008)
[23] Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh, and Ding Yuan Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater., 19, 3077 (2009)
[24] Han Zhang, Qiaoliang Bao, Dingyuan Tang, Luming Zhao and Kianping Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker”, Appl. Phys. Lett. 95, 141103 (2009)
[25] H. Zhang, D. Y. Tang1, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene”, Optics Express, 17, 17632 (2009)
[26] Amos Martinez, Kazuyuki Fuse, Bo Xu and Shinji Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing”, Optics Express, 18, 23054 (2010)
[27] Zhipei Sun, Tawfique Hasan, Felice Torrisi, Daniel Popa, Giulia Privitera, Fengqiu Wang, Francesco Bonaccorso, Denis M. Basko, and Andrea C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACSNANO, 4, 803 (2010)
[28] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Materials Today, 10, 20 (2007)
[29] “Scientific Background on the Nobel Prize in Physics 2010 GRAPHENE” Physics of the Royal Swedish Academy of Sciences (2010)
[30] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim “The electronic properties of grapheme,” Reviews of Modern Physics, 81, 109 (2009)
[31] Yong-Won Song, Sung-Yeon Jang, Won-Suk Han, and Mi-Kyung Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett., 96, 051122 (2010)
[32] M. Xu et al., Macromolecules, 39, 3540-354 (2006)
[33] L.T. Korley et al., Macromolecules, 39, 7030-7036 (2006)
[34] Hu Yao Juan, “Graphene: Synthesis, Functionalization and Applications in Chemistry” Acta Phys. Chim. Sin., 26(8), 2073-2086 (2010)
[35] Alexander N. obraztsov, “Chemical vapour deposition: Making graphene on a large scale”, Nat. Nanotechnol., 4, 212 (2009)
[36] P. Lauffer, K. V. Emtsev, R. Graupner, Th. Seyller, and L. Ley, “Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy”, Physica Review B 77, 155426 (2008)
[37] F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, R. V. Penty, I. H. White and A. C. Ferrari, “Fabrication, Characterization and Mode Locking Application of Single-Walled Carbon Nanotube/Polymer Composite Saturable Absorbers”, Int. J. Mater. Form., vol. 1, pp. 107-112 (2008)
[38] 彭偉棟,”結合激發-探測功能之超快時間解析雷射掃描顯微儀,” 國立中山大學碩士論文 (2005)
[39] Femtochrome Research, Inc., http://www.femtochrome.com/
[40] Jin-Chen Chiu, Yi-Fen Lan, Chia-Ming Chang, Xi-Zong Chen, Chao-Yung Yeh, Chao-Kuei Lee, Gong-Ru Lin, Jiang-Jen Lin, and Wood-Hi Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse”, Optics Express, 18, 3592 (2010)
[41] Jin-Chen Chiu, Chia-Ming Chang, Bi-Zen Hsieh, Shu-Ching Lin, Chao-Yung Yeh, Gong-Ru Lin, Chao-Kuei Lee, Jiang-Jen Lin, and Wood-Hi Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber”, Optics Express, 19, 4036 (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code