Responsive image
博碩士論文 etd-0801112-133340 詳細資訊
Title page for etd-0801112-133340
論文名稱
Title
基於最大期望值演算法之合併式雙向中繼網路資料偵測及通道估測
EM-Based Joint Detection and Estimation for Two-Way Relay Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-08-01
關鍵字
Keywords
合作式通訊網路、雙向中繼網路、通道估測、資料偵測、最大期望值演算法
channel estimation, cooperative communication network, expectation-maximization algorithm, data detection, two-way relay network
統計
Statistics
本論文已被瀏覽 5637 次,被下載 229
The thesis/dissertation has been browsed 5637 times, has been downloaded 229 times.
中文摘要
本論文中考慮一個在雙向中繼網路(Two-Way Relay Network, TWRN)中通道估測(Channel Estimation)的問題,並且針對兩個不同的無線通道假設來設計合併式資料偵測及通道估測的方法。先前的研究中曾提出訓練型通道估測(Training-Based Channel Estimation)方法來得到雙向中繼網路的通道狀態資訊(Channel State Information, CSI),但是在現實環境中,傳送資料及訓練序列(Training Sequence)所經過的通道會因為通道變化速度的不同而有不同程度的差異,進而使得資料偵測結果受到嚴重的影響,所以要達到較佳的資料偵測結果必定需要更頻繁的使用訓練序列,但是此舉使得頻寬效益(Bandwidth Efficiency)大幅降低。為了提升頻寬效益,在這裡我們提出了一個基於最大期望值( Expectation-Maximization, EM)演算法的合併式通道估測與資料偵測方法。由電腦模擬結果觀察到通道估測結果在高訊號雜訊比(Signal-to-Noise Ratio, SNR)的區間可以幾乎貼近Cramer-Rao下限(Cramer-Rao Lower Bound, CRLB),並且隨著資料區塊長度越長可以越貼近CRLB。此外,在相同領航信號(Pilots)數量的情況下,不論在時變(Time-Varying)或非時變(Time-Invariant)通道的資料偵測效能皆優於訓練型通道估測方法。
Abstract
In this paper, the channel estimation problem for a two-way relay network (TWRN) based on two different wireless channel assumptions is considered. Previous works have proposed a training-based channel estimation method to obtain the channel state information (CSI). But in practice the channel change from one data block to another, which may cause the performance degradation due to the outdated CSI. To enhance the performance, the system has to insert more training signal. In order to improve the bandwidth efficiency, we propose a joint channel estimation and data detection method based on expectation-maximization (EM) algorithm. From the simulation results, the proposed method can combat the effect of fading channel and still the MSE results are very close to Cramer-Rao Lower Bound (CRLB) at the high signal-to-noise ratio (SNR) region. Additionally, as compare with the previous work, the proposed scheme also has a better detection performance for both time-varying and time-invariant channels.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vi
第一章 概論 1
1.1 研究動機 4
1.2 研究成果 4
1.3 論文結構 5
第二章 EM演算法 7
第三章 TWRN系統架構 10
第四章 基於TWRN之決策及估測準則推導 13
4.1 基於環境假設一之決策及估測準則推導 13
4.2 基於環境假設二之決策及估測準則推導 18
第五章 模擬結果分析與討論 24
5.1 基於環境假設一之模擬結果分析 24
5.2基於環境假設二之模擬結果分析 30
第六章 結論 35
參考文獻 36
附錄一 41
附錄二 42
中英對照表 47
縮寫對照表 52
參考文獻 References
[1] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Probab., vol. 3, pp. 120–154, 1971.

[2] T. Cover and A. E. Gamal, "Capacity theorems for the relay channel", IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572–584, Sep. 1979.

[3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[4] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[5] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[6] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037–3062, Sep. 2005.

[7] Z. Liu, M. Uppal, V. Stankovic, and Z. Xiong, “Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4467–4481, Nov. 2009.

[8] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, “Coded cooperation in wireless communications: Space-time transmission and iterative decoding,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 362–371, Feb. 2004.

[9] F. Tian, W. Zhang, W.-K. Ma, P. C. Ching, and H. V. Poor, “An effective distributed space-time code for two-path successive relay network,” IEEE Trans. Commun., vol. 59, no. 8, pp. 2254–2263, Aug. 2011.

[10] S. Sugiura, S. Chen, H. Haas, P. M. Grant, and L. Hanzo, “Coherent versus non-coherent decode-and-forward relaying aided cooperative space-time shift keying,” IEEE Trans. Commun., vol. 59, no. 6, pp. 1707–1719, June 2011.

[11] B. Sirkeci-Mergen and M. C. Gastpar, “On the broadcast capacity of wireless networks with cooperative relays,” IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 3847–3861, Aug. 2010.

[12] J. N. Laneman, and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[13] A. Scaglione, and Y.-W. Hong, “Opportunistic large arrays: Cooperative transmission in wireless multihop ad hoc networks to reach far distances,” IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2082–2092, Aug. 2003.

[14] M.-L. Wang, C.-P. Li, and W.-J. Huang, “Pilot-based channel estimation in amplify-and-forward multipath cooperative networks,” in Proc. IEEE APWCS, Singapore, Aug. 2011.

[15] K.-C. Lee, J.-W. Pu, C.-P. Li, and H.-J. Li, “Performance analysis of dual-hop AF STBC systems with interference at the relay,” in Proc. IEEE Globecom, Disneyland Hotel, Anaheim, California, USA Dec. 2012.

[16] M.-F. Hsu, T.-Y. Wang, C.-T. Yu, C.-P. Li, and C.-W. Tsung, “An ordered statistics approach for sequential detection in multi-relay networks,” in Proc. IEEE APWCS, Kyoto, Japan, Aug. 2012.

[17] C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, 1961, pp. 611–644.

[18] T. J. Oechtering, C. Schnurr, I. Bjelakovic, and H. Boche, “Broadcast capacity region of two-phase bidirectional relaying,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 454–458, Jan. 2008.

[19] S. J. Kim, P. Mitran, and V. Tarokh, “Performance bounds for bidirectional coded cooperation protocols,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5235–5241, Nov. 2008.

[20] R. Vaze and R. W. Heath, “On the capacity and diversity-multiplexing tradeoff of the two-way relay channel,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4219–4234, July 2011.

[21] T. Cui, F. Gao, T. Ho, and A. Nallanathan, “Distributed space-time coding for two-way wireless relay networks,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 658–671, Feb. 2009.

[22] H. Ding, J. Ge, D. B. da Costa, and Y. Guo, “Outage analysis for multiuser two-way relaying in mixed Rayleigh and Rician fading,” IEEE Commun. Lett., vol. 15, no. 4, pp. 410–412, Apr. 2011.

[23] L. Fan, X. Lei, P. Fan, and R. Q. Hu, “Outage probability analysis and power allocation for two-way relay networks with user selection and outdated channel state information,” IEEE Commun. Lett., vol. 16, no. 5, pp. 638–641, May 2012.

[24] Y. Jia, and A. Vosoughi, “Outage probability and power allocation of two-way amplify-and-forward relaying with channel estimation errors,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 1985–1990, June 2012.

[25] Y. Yang, J. Ge, and Y. Gao, “Power allocation for two-way opportunistic amplify-and-forward relaying over Nakagami-m channels,” IEEE Trans. Wireless Commun., vol. 10, no. 7, pp. 2063–2068, July 2011.

[26] W. Wang, S. Jin, X. Gao, K.-K. Wong, M. R. McKay, “Power allocation strategies for distributed space-time codes in two-way relay networks,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5331–5339, Oct. 2010.

[27] F. Gao, R. Zhang, and Y.-C. Liang, “Optimal channel estimation and training design for two-way relay networks,” IEEE Trans. Commun., vol. 57, no. 10, pp. 3024–3033, Oct. 2009.

[28] B. Jiang, F. Gao, X. Gao, and A. Nallanathan, “Channel estimation and training design for two-way relay networks with power allocation,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp. 2022–2032, June 2010.

[29] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.

[30] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc., vol. 39, no. 1, pp. 1–38, 1977.

[31] T.-Y. Wang, J.-W. Pu, and C.-P. Li, “Joint detection and estimation for cooperative communications in cluster-based networks,” in Proc. IEEE ICC, Dresden, Germany, June 2009, pp. 1–5.

[32] T.-Y. Wang, J.-W. Pu, and C.-P. Li, “Joint detection and estimation for cooperative communications in cluster-based networks,” Wireless Communications & Mobile Computing, Published online: DOI: 10.1002/wcm.1199, Oct. 2011.

[33] N. O’Donoughue and J. M. F. Moura, “On the product of independent complex Gaussians,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1050–1063, Mar. 2012.

[34] G. N. Tavares and L. M. Tavares, “On the statistics of the sum of squared complex Gaussian random variables,” IEEE Trans. Commun., vol. 55, no. 10, pp. 1857–1862, Oct. 2007.

[35] Y. Ma, D. Zhang, A. Leith, and Z. Wang, “Error performance of transmit beamforming with delayed and limited feedback,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1164–1170, Mar. 2009.

[36] E. de Carvalho, J. Cioffi, and D. Slock, “Cramer-rao bounds for blind multichannel estimation," in Proc. IEEE Globelcom, San Francisco, USA, Nov. 2000, vol. 2, pp. 1036–1040.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code