Responsive image
博碩士論文 etd-0801112-212357 詳細資訊
Title page for etd-0801112-212357
論文名稱
Title
電壓閃爍之分析與預測
Voltage Flicker Analyses and Predictions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-07
繳交日期
Date of Submission
2012-08-01
關鍵字
Keywords
里亞普諾夫指數、電弧爐、電壓閃爍、相空間、電壓閃爍轉移因數
Flicker, Electric arc furnace, Lyapunov exponent, Phase space, Flicker transfer factor
統計
Statistics
本論文已被瀏覽 5678 次,被下載 3321
The thesis/dissertation has been browsed 5678 times, has been downloaded 3321 times.
中文摘要
電壓閃爍的現象主要是由中、高電壓系統供電的大型電弧爐所造成,另外隨著風力發電機裝設數量及機組容量的增加,在不穩定的風速情形下,產生波動的輸出電力,也會造成電力系統發生程度不一的電壓閃爍現象,影響鄰近匯流排照明及電子設備等之性能。電弧爐主要被來熔解鐵料,由於工作過程中之負載變化,呈現動態的現象,這些動態變化的現象,具有長期持續性的特性,可以顯示特殊碎形維度的結構,藉由碎形結構的鑑別可以理解時間序列背後所隱藏的動態行為與結構。
本論文應用非線性預測模式於電弧爐產生電壓閃爍之預測,良好的電壓閃爍預測能力將有助於用戶管理決策及電力公司使用,協助電弧爐廠改善電壓閃爍問題。本研究利用多台電壓閃爍分析儀器,至擁有電弧爐的工廠,進行實地的同步量測,來探討電壓閃爍時間序列隨機變化行為,透過相空間重建原理,並利用里亞普諾夫指數,建立三種不同的預測模型。本論文以實測之電弧爐電壓閃爍資料研究測試結果顯示,短期的電壓閃爍值的預測是可行的。
亞洲部份國家採用∆V10電壓閃爍標準,由於IEEE及多國管制規範準則鼓勵採用IEC電壓閃爍標準,如何建立不同電壓閃爍標準之間合理的轉換比率以做為電壓閃爍規範,本文利用於電弧爐廠內同步紀錄Pst及∆V10評估標準之量測數值,透過統計方法之演算,歸納研究出兩類標準之間合理的轉換比率關係。本文也以實際運轉資料來歸納整理出不同電壓等級間實用的電壓閃爍轉移因數,此有助於電壓閃爍之規範。
Abstract
Voltage (lighting) flicker is mainly caused by the electric arc furnaces (EAF) facility supplied by the medium and high voltage power network. In addition to that, because of the increase of wind power generation in both quantity and capacity, intermittent power output of wind turbines under wind speed variation could also cause voltage flickers that affect the performance of lighting and electronics devices in the neighboring feeder buses. Successful voltage flicker prediction and propagation estimation would help both utility and customers in dealing with the problem. This dissertation presents a nonlinear model for the short term prediction of voltage flicker due to EAF operations.
In this study, synchronized voltage flicker measurement was conducted at several EAF facilities to understand the stochastic behavior of voltage flicker. The electric loading condition during EAF melting process shows a long term qualitative behavior of a dynamic system and illustrates a special structure of a fractal system. With the fractal structure identification, the behavior hidden behind the voltage flicker time series measurement could be grasped. Using a phase space reconstruction technique and Lyapunov exponent (LE) of state trajectory in the phase space, based on actual voltage flicker measurements, it is proved that the voltage flicker time series is chaos. By using LE, three formulations are adopted to build the prediction models and illustrate the feasibility of short term EAF voltage flicker prediction.
Currently, some Asian countries are using the Japanese ΔV10 flicker voltage standard. Due to the adoption of IEC standard by IEEE and European countries, a rational conversion of flicker planning limits between different standards would help utilities consider revising or changing their voltage flicker standards and planning limits. Statistical analyses of Pst and ΔV10 measurement are conducted in this study. Under different EAF types and operation conditions, reasonable conversion factors between Pst and ΔV10 standards are derived, and the flicker transfer factor between different voltage levels of the power supply system are presented.
目次 Table of Contents
中文摘要 II
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
名詞及符號參數解釋 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究目的及內容 9
1.4 主要成果 10
1.5 論文架構 10
第二章 電弧爐與電壓閃爍介紹 12
2.1 交流電弧爐 13
2.2 直流電弧爐 14
2.3 電壓閃爍之涵義 15
2.4 UIE/IEC標準之電壓閃爍評估指標 16
2.5 等效10Hz標準之電壓閃爍評估指標 22
2.6 電壓閃爍管制要點 24
2.7 電壓閃爍轉移現象 28
第三章 混沌理論 32
3.1 混沌現象與特性 33
3.1.1 非線性動態行為 35
3.1.2 對初始條件的敏感性 36
3.1.3 奇異吸子的存在 37
3.2 碎形 39
3.3 混沌時間序列的鑑別 40
3.3.1 里亞普諾夫指數 40
3.3.2 相關維度 45
第四章 以相空間為基礎之時間序列預測 46
4.1 相空間之建構 46
4.2 以自相關函數決定延遲時間 49
4.3 以G-P演算法決定相關維度 50
4.4 以C-C法決定相關維度與延遲時間 53
4.5 時間序列預測方法 58
4.6 預測流程與誤差統計指標 70
第五章 電壓閃爍序列分析與預測 73
5.1 電壓閃爍量測資料 73
5.2 電壓閃爍資料之量測與統計分析 77
5.3 相空間參數的決定 85
5.3.1 自相關函數與G-P演算法 85
5.3.2 C-C法 88
5.4 混沌時間序列的鑑別 90
5.4.1 里亞普諾夫指數分析 90
5.4.2 相關維度分析 90
5.5 電壓閃爍時間序列之預測 92
5.5.1 不同相空間參數建構方式下的預測比較 92
5.5.2 採用C-C演算對不同預測方法之準確性分析 94
5.5.3 不同的訓練資料長度測試 100
5.5.4 其他非線性預測法之比較 101
第六章 結論與未來研究方向 104
6.1結論 104
6.2未來研究方向 105
參考文獻 107
參考文獻 References
[1] J. L. Guan, J. C. Gu and C. J. Wu, “A Novel Method for Estimating Voltage Flicker, ” IEEE Trans. on Power Delivery, Vol. 20, No. 1, 2005, pp.242-247.
[2] 辜志承, 吳啟瑞, 江榮城, 高壓端電壓閃爍源對低壓用戶之影響, 台灣電力綜合研究計畫報告, 民國八十三年。
[3] C. J. Wu and L. H. Lee, “Electric Power Quality Evaluation of 161kV Large Size Steel Plants,” Power Research Institute, Taiwan Power Company, Taiwan, R.O.C., 1995.
[4] M. T. Chen, “Digital Algorithms for Measurement of Voltage Flicker,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 144, No. 2, 1997, pp. 175-180.
[5] M. M. Morcos and J. C. Gomez, “Flicker Sources and Mitigation,” IEEE Power Engineering Review, Vol. 22, No. 11, 2002, pp. 5-10.
[6] R. C. Dugan, M. F. McGranaghan and H. W. Beaty, Electrical Power Systems Quality, McGraw-Hill, International Editions, New York, USA, 2000.
[7] C. Surapong, C. Y. Yu, D. Thukaram, T. Nipon and K. Damrong, “Minimization of the Effects of Harmonics and Voltage Dig Caused by Electric Arc Furnace,” Proceeding of the IEEE Power Engineering Society Winter Meeting, Vol. 4, 2000, pp. 2568-2576, Singapore.
[8] P. Ashmole and P. Amante, “System Flicker Disturbances from Industrial Loads and Their Compensation,” IEE Power Engineering Journal, Vol. 11, No. 5, 1997, pp. 213-218.
[9] IEC Std. 61000-3-7, “Electromagnetic Compatibility, Limitation of Voltage Fluctuations and Flicker Equipment Connected to Medium and High Voltage Power Supply Systems,” 1995.
[10] G. C. Montanari, M. Loggini, A. Cavallini, L. Pitti and D. Zaninelli, “Arc Fumace Model for the Study of Flicker Compensation in Electrical Networks,” IEEE Trans. on Power Delivery, Vol. 8, No. 4, 1994, pp. 2026-2036.
[11] R. Collantes and T. Ghez, “Identification and Modeling of a Three Phase Arc Fumace for Voltage Disturbance Simulation,” IEEE Trans. on Power Delivery, Vol. 12, No. 4, 1997, pp. 1812-1817.
[12] P. E. King, T. L. Ochs, and A. D. Hartman, “Chaotic Response in Electric Arc Furnace,” Journal of Applied Physics, Vol. 76, 1994, pp. 2059-2065.
[13] O. C. Efrain, G. T. Heydt, E. J. Kostelich, S. S. Venkata and A. Sundaram, “Nonlinear Deterministic Modeling of Highly Varying Load,” IEEE Trans. on Power Delivery, Vol. 14, No. 2, 1999, pp.237-242.
[14] G. Carpinelli, F. Iacovone, A. Russo and P. Varilone, “Chaos-Based Modeling of DC Arc Furnaces for Power Quality Issues,” IEEE Trans. on Power Delivery, Vol. 19, 2004, pp.1869-1876.
[15] F. Wang, Z. Jin, Z. Zhu and X. Wang, “Modeling the DC Electric Arc Furnace Based on Chaos Theory and Neural Network,” IEEE Power Engineering Society General Meeting, Vol. 3, 2005, pp.2503-2508, San Francisco, USA.
[16] P. Grassberger and I. Procaccia, “Characterization of Strange Attractors,” Physical Review Letters, Vol. 50, No. 5, 1983, pp. 3469-349.
[17] 陳冠宏,以混沌理論為基礎之電壓閃爍預測,中山大學碩士論文,民國97年。
[18] Y. J. Hsu, K. H. Chen, P. Y. Huang and C. N. Lu, “Electric Arc Furnace Voltage Flicker Analysis and Prediction,” IEEE Trans. on Instrumentation and Measurement, Vol. 60, No. 10, 2011, pp.3360-3368.
[19] IEC Std. 61000-4-15, IEC Flicker Meter – Functional and Design Specification, 1997.
[20] IEC 868/EN608680, IEC Flickermeter, Evaluation of Flicker Severity, 1993.
[21] Testing and Measurement Techniques – Flickermeter – Functional and Design Specifications, IEC 61000-4-15, 2003.
[22] IEEE Recommended Practice for Measurement and Limits of Voltage Fluctuations and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems, IEEE Standard 1453, 2004.
[23] 日本電氣學會技術報告(II)部第72號,製鋼用電弧爐電力供給問題最新動向,電氣加熱技術學會,昭和53年(1978)。
[24] A. Robert and M. Couvreur, “Arc Furncae Flicker Assessent and Prediction,” CIRED 12th International Conference on Electricity Distribution, No. 73, Vol. 2, 1993, pp.2.2.1-2.2.6, Birmingham, England.
[25] 江榮城等,台電公司電壓閃爍管制要點解析,民國95年。
[26] D. Arlt, M. Stark, Ch. Eberlein, “Examples of International Flicker Requirements in High Voltage Networks and Real World Measurements,” in Proc. 9th international conference Electric Power Quality and Utilisation, 2007, pp. 1-4, Barcelona, Spain.
[27] A. Novitskiy and H. Schau, “Relationship Between the Flicker Criteria ΔV10 and Pst,” in 15th IEEE International Conference on Harmonics and Quality of Power, 2012, pp.1-6, Hong Kong.
[28] IEC 61000-3-7, Edition 2.0 2008-02, Part 3–7: Limits—Assessment of Emission Limits for the Connection of Fluctuating Installations to MV, HV and EHV Power Systems.
[29] R. Horton and T. A. Haskew, “Determination of Flicker Transfer Coefficients Near Large Synchronous Generators,” IEEE Trans. on Power Delivery, Vol. 25, No. 1, 2010, pp. 260-269.
[30] R. Horton and T. A. Haskew, “Effect of Transfer Coefficients on MV and LV Flicker Levels,” IEEE Trans. on Power Delivery, Vol. 26, No. 2, 2011, pp. 462-439.
[31] H. Renner and M. Sakulin, “Flicker Propagation in Meshed High Voltage Networks,” in Proc. 9th Conf. Harmonics Quality Power, Vol. III, Orlando, FL, 2000, pp. 1023-1028.
[32] A. Hernández, J. G. Mayordomo, R. Asensi and L. F. Beites, “A Method Based on Interharmonics for Flicker Propagation Applied to Arc Furnaces,” IEEE Trans. on Power Delivery, Vol. 20, No. 3, 2011, pp. 2334-2342.
[33] Y. Y. Hong and L. H. Lee, “Stochastic Voltage-flicker Power Flow,” IEEE Trans. on Power Delivery, Vol. 15, No. 1, 2000, pp. 407-411.
[34] S. M. Halping and R. F. Burch, “An Improved Simulation Approach for the Analysis of Voltage Flicker and the Evaluation of Mitigation Strategies,” IEEE Trans. on Power Delivery, Vol. 12, No. 3, 1997, pp. 1285-1291.
[35] S. Tennakoon, S. Perera and D. Sutanto, “Flicker Propagation in Interconnected Power Systems,” Power Engineering Society Conference and Exposition in Africa, 2007, pp. 1-6.
[36] http://62.160.8.20/eetkb/technologies/details.aspx?id=27
[37] 吳啟瑞、辜志承、蕭弘清,高壓閃爍量測分析研究,經濟部能源委員會,專題研究計劃報告,民國八十九年。
[38] K. Yukihira, “Estimation techniques and limits of voltage fluctuation - Reconsideration on introduction of the IEC flickermeter and development of lighting equipment,” Technical Report T00040 of Komae Research Laboratory, Central Research Institute of Electrical Power Industry.
[39] 台灣電力公司電壓閃爍管制要點,台灣電力公司,民國95年。
[40] H. Renner and M. Sakulin, “Flicker Propagation in Meshed High Voltage Networks,” in Proc. 9th Int. Conf. Harmonics and Quality of Power, Vol.3, 2000, pp. 1023-1028, Orlando, Florida USA.
[41] Electromagnetic Compatibility (EMC)—Part 3: Limits—Section 7: Assessment of Emission Limits for Fluctuating Loads in MV and HV Power Systems—Basic EMC Publication, IEC/TR 61000-3-7:2001, Ed. 1.
[42] E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Science, 1963, pp. 103-141.
[43] T. Y. Li and J. Yorke, “Period Three Implies Chaos,” Am. Math. Monthly, 1975, pp. 985-992.
[44] B. Davies, Exploring Chaos : Theory and Experiment, Westview Press, 1999.
[45] 張兆旭,Fractal導論,民國83年。
[46] B. Mandelbort, The Fractal Geometry of Nature, W. H. Freeman, 1982.
[47] 陳信維,混沌與碎形理論在時間序列分析之應用,台灣科技大學碩士論文,民國88年。
[48] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov Exponents from a Time Series,” Physica 16D, North- Holland, Amsterdam, 1985, pp. 285-317.
[49] W. Kinsner, “Characterizing Chaos Through Lyapunov Metrics,” IEEE Trans. on Systems, Vol. 3, 2006, pp. 141-151.
[50] G. P. Williams, Chaos Theory Tamed, Joseph Henry Press, 1997.
[51] F. Takens, “Detecting Strange Attractors in Turbulence,” Lecture notes in Math, 1981, pp. 361-381.
[52] W. A. Brock, D. A. Hsieh and B. LeBaron, “Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence,” MIT Press, Cambridge, MA, 1991.
[53] W. A. Brock, W. D. Dechert, J.A. Scheinkman and B. LeBaron, “A Test for Independence Based on The Correlation Dimension,” Econ. Rev. 15, 1996, pp. 197-235, MathSciNet.
[54] S. Islam, R. L. Bars and I. Rodriguez-Iturbe, “A Possible Explanation for Low Correlation Dimension Estimates for the Atmosphere,” Journal of Applied Meteorology, Vol. 32, No. 2, 1993, pp. 203-208.
[55] D. Broomhead and G. P. King, “Extracting Qualitative Dynamics from Experimental Data,” Physica 20D, 1986, pp. 217-236.
[56] D. Kugiurmtzis, “State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length,” Physica D, 1996, pp. 13-28.
[57] H. S. Kim, R. Eykholt and J. D. Salas, “Nonlinear Dynamics, Delay Times and Embedding Windows,” Science Direct-Physica D, 1999, pp. 48-60.
[58] J. D. Salas, H. S. Kim, R. Eykholt, P. Burlando and T. R. Green, “Aggregation and Sampling in Deterministic Chaos: Implications for Chaos Identification in Hydrological Processes,” Nonlinear Processes in Geophysics, 2005, pp. 557-567.
[59] N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw, “Geometry from a Time Series," Phys. Rev. Lett. 45, 1980, pp. 712-716.
[60] J. D. Farmer and J. J. Sidorowich, “Predicting Chaotic Time Series,” Phys. Rev. Lett. 59, 1987, pp. 845-848.
[61] H. Wang, G. Chen and J. Lu, “Complex Dynamical Behaviors of Daily Data Series in Stock Exchange,” Phys. Lett. A, Vol. 333, 2004, pp. 246-255.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code