Responsive image
博碩士論文 etd-0801113-023704 詳細資訊
Title page for etd-0801113-023704
論文名稱
Title
以熱蒸鍍法沉積碲化銻熱電薄膜特性之研究
Investigation of the thermoelectric properties of Sb2Te3 thin films by thermal evaporation processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-09-01
關鍵字
Keywords
席貝克係數、熱蒸鍍、熱電材料、碲化銻、功率因子
Power factor, evaporation, Seebeck coefficient, Sb2Te3, Thermoelectric material
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
有鑒於能源短缺及節能減碳的議題日益迫切,綠能科技成為現今最熱門之研究;熱電材料具備了低污染及再生能源的優點,經由熱電元件可以將熱能與電能相互轉換。目前室溫環境中熱電性質最佳的熱電材料為Bi2Te3與Sb2Te3,並普遍應用於商用的致冷及發電。本實驗以熱蒸鍍法製備Sb2Te3熱電薄膜,經調變基板沉積溫度與利用熱退火製程來提升材料的熱電特性。另外,根據文獻指出,利用摻雜的方式可以提升材料之熱電特性,因此,本研究亦以共蒸鍍法製作銀摻雜之Sb2Te3薄膜來提升材料的導電性與功率因子,探討摻雜濃度、基板沉積溫度以及退火溫度對銀摻雜之Sb2Te3熱電薄膜的影響。
由SEM表面形貌與X光繞射分析顯示,在室溫下沉積的薄膜存在許多缺陷與結晶性不佳等缺點,使其導電率偏低,經由能譜分散分析儀觀察室溫沉積之薄膜成分Sb:Te比例約為48.5:51.5;而隨著基板沉積溫度的提升,薄膜成分趨向於理想的Sb:Te為40:60之比例,同時薄膜的晶粒大小與晶相強度亦隨基板沉積溫度之提升呈現增加的趨勢,退火製程則有效地降低薄膜缺陷與提升晶相強度。
在熱電性質量測中,隨著基板沉積溫度的上升,席貝克(Seebeck)係數會呈現下降的趨勢;而藉由銀摻雜可提升載子濃度,但會導致Seebeck係數下降,而熱退火製程則會提升Seebeck係數。在導電率部分則呈現相反的趨勢,隨基板沉積溫度的增加會使晶粒逐漸成長,進而使導電率提升;另外,藉由銀摻雜也使會使得導電率增加,而退火製程亦可有效的降低缺陷密度使導電率上升。
在薄膜基板沉積溫度150°C、退火溫度300°C的情況下,有一最佳的導電率約為1261.9 (S˙cm-1),Seebeck係數為96.87 (µV/K);而經銀摻雜濃度為2.11 atom%、退火溫度200°C時,導電率會提升至2.25×10¬3 (S․cm-1),Seebeck係數為94.2 (µV/K),換算後可得一較佳之功率因子為19.99 (µW/cm․K2)。
Abstract
The crisis of energy shortage and carbon reduction has become an important issue; the green technology is getting more and more attention. The thermoelectric materials exhibit the advantages of environmental protection and renewable energy. The thermoelectric devices can convert heat energy to electric energy and vice versa.
Bismuth telluride and antimony telluride are known to be the best thermoelectric materials within the room temperature region. In this study, the Sb2Te3 thin films were prepared by thermal evaporation method, and the thermoelectric properties were promoted by heating and annealing processes. Further, in order to improve the power factor of the thin films, Ag-doped Sb2Te3 has been studied by co-evaporation.
The structures of the thin films were analyzed by XRD and SEM respectively. The thin films deposited at room temperature exists many defects, poor crystallization, and amorphous phase. Therefore, the conductivity was lower. The chemical composition of the thin films can be obtained from EDS analysis. The ratio of Sb to Te is 48.5:51.5 for the thin films deposited at room temperature, whereas it tends to be 40:60 as the substrate temperature increases.
The grain size and X-ray diffraction peaks were increased by the increased temperature. The process of annealing could effectively reduce the defects and enhance the diffraction peaks. According to the measurement results, the Seebeck coefficient was decreased by the increased annealing temperature. With increase of Ag doping content, the Seebeck coefficient will be decreased, by the increased annealing temperature . On the other hand, the conductivity was increased with increase the substrate temperatures. Then, the conductivity was increased substantially with Ag doping. Further, the conductivity was increased as the annealing temperature increased.
The optimal conductivity of 1.27×10¬3 (S․cm-1) was obtained as the thin films were deposited at the substrate temperature of 150°C and annealed at 300°C. The conductivity of the above thin film was increased to 2.25×10¬3 (S․cm-1) after 2.11 atom% Ag doping and annealed at 200°C, whereas the Seebeck coefficient was reduced to 94.2 (µV/K). The maximum power factor of 19.99 (µW/cm․K2) was obtained.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 前言 1
1.1 綠能產業與熱電材料的發展 1
1.2 熱電應用 3
1.3 研究動機與目的 7
1.4 研究規劃 9
第二章 熱電理論與文獻回顧 10
2.1 熱電效應 10
2.1.1 Seebeck效應 10
2.1.2 Peltier效應 11
2.1.3 Thomson效應 12
2.2 熱電材料特性分析 14
2.2.1 熱電轉換效率 14
2.2.2 熱電優值 15
2.3 熱電材料之溫度應用範圍與應用原理 18
2.3.1 熱電材料介紹 18
2.3.2 熱電材料的應用原理 20
2.3.3 文獻回顧 ─ 熱電薄膜製程 21
第三章 實驗方法與步驟 24
3.1 實驗步驟 24
3.2 實驗流程 25
3.2.1 Sb2Te3薄膜於不同基板溫度及熱退火之熱電特性探討 25
3.2.2 Ag摻雜Sb2Te3薄膜於不同基板溫度及熱退火之熱電特性探討 26
3.3 實驗製程與儀器介紹 30
3.3.1 熱蒸鍍機原理及介紹 30
3.3.2 熱退火製程原理及介紹 32
3.4 熱電材料物理特性分析 33
3.4.1 X光粉末繞射儀(X-Ray Diffractometer,XRD) 33
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 34
3.4.3 X光能譜散射分析儀(Energy Dispersive Spectrometer,EDS) 35
3.5 熱電性質量測 36
3.5.1 席貝克係數量測 36
3.5.2 電阻率量測 37
第四章 結果與討論 38
4.1 Sb2Te3原始材料與薄膜特性分析 38
4.2 Sb2Te3蒸鍍參數探討 40
4.2.1 Sb2Te3薄膜於不同沉積速率之物性分析 40
4.2.2 Sb2Te3薄膜於不同沉積速率之電性分析 43
4.2.3 Sb2Te3薄膜於不同基板沉積溫度之物性分析 45
4.2.4 Sb2Te3薄膜於不同基板沉積溫度之電性分析 49
4.3 共蒸鍍薄膜Ag-doped Sb2Te3之不同Ag比例的摻雜探討 52
4.3.1 在基板沉積溫度150°C及不同Ag蒸鍍電流下,共蒸鍍薄膜Ag-doped Sb2Te3之物性分析 52
4.3.2 在基板沉積溫度150°C及不同Ag蒸鍍電流下,共蒸鍍薄膜Ag-doped Sb2Te3之電性分析 57
4.4 熱退火處理對薄膜熱電特性之影響 60
4.4.1 於基板沉積溫度150˚C及退火時間0.5小時,Sb2Te3薄膜於不同退火溫度之物性分析 60
4.4.2 於基板沉積溫度150˚C及退火時間0.5小時,Sb2Te3薄膜於不同退火溫度之電性分析 64
4.4.3 於基板沉積溫度150°C及退火時間0.5小時,共蒸鍍薄膜Ag-doped Sb2Te3於不同退火溫度之物性分析 67
4.4.4 於基板沉積溫度150°C及退火時間0.5小時,共蒸鍍薄膜Ag-doped Sb2Te3於不同退火溫度之電性分析 71
4.5 各製程最佳參數 74
第五章 結論 75
參考文獻 77
參考文獻 References
[1] 楊致行,” 專欄報導1-新興綠能產業之發展趨勢”,證券櫃台買賣中心,147期,2010年。
[2] 經濟部能源局,”2012年能源產業技術白皮書”,經濟部,2012年。
[3] 經濟部技術處,”產業技術白皮書-先進綠能材料”,經濟部2011年。
[4] 黃振東、謝慧霖,”台灣熱電發電技術發展之機會與挑戰”,工業材料雜誌,298期,2011年。
[5] T. J. Seebeck, “Magnetic polarization of metals and minerals”, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin (1822) 265.
[6] E. S. Toberer, S. R. Brown, T. Ikeda, S. M. Kauzlarich , and G. J. Snyder “High thermoelectric efficiency in lanthanum doped Yb14MnSb11”, Appl. Phys. Lett., 93 (2008) 062110.
[7] B. B. Iversen “Fulfilling thermoelectric promises: b-Zn4Sb3 from materials research to power generation”, J. Mater. Chem., 20 (2010) 10778.
[8] F. Gascoin, S. Ottensmann, D. Stark, S. M. Haile, and G. J. Snyder “Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2” , Adv. Funct. Mater., 15 (2005) 1860.
[9] R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. E1-Masry, ” MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications” J. Cryst. Growth., 170 (1997) 817.
[10] A. I. Boukai1, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials." Nature, 451 (2008) 168.
[11] C. LaBounty, A. Shakouri ,and J. E. Bowers, “Design and characterization of thin film microcoolers”, J. Appl. Phys. 89 (2001) 4059.
[12] R. Venkatasubramanian, E. Slivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, 413 (2001) 597.
[13] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, 47 (1993) 12727.
[14] 朱旭山,”熱電發電技術及其應用方向”,工業材料雜誌,286 期,119,2010 年。
[15] 朱旭山,”熱電材料與元件之原理與應用”,電子與材料雜誌,第22期,78,2004年。
[16] 材料世界網,”熱電材料與應用現況”,材料世界網,2009年。
[17] D. M. Rowe, “Thermoelectrics Handbook :Macro to Nano”, CRC press (2006).
[18] Y. Lan, A. J. Munnuch, G. Chen, and Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach”, Adv. Funct. Mater., 20 (2010) 357.
[19] H. J. Goldsmid, “Thermoelectric Refrigeration”, Plenum Press, NY (1964).
[20] N. Scoville, C.Bajgar, J.Rolfe, J. P. Fleurial, and J. Vandersande, ”Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles”, Nanostructured materials, 5 (1995) 207.
[21] L. D. Hicks, M. S. Dresselhaus, ”Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, 47 (1993) 16631.
[22] G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics”, (2001) Chap. 2, 41.
[23] G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics”, (2001) Chap. 2, 40.
[24] M. Jonson, G. D. Mahan, “Mott’s formula for the thermopower and the
Wiedemann-Franz law”, Phys. Rev. B, 21 (1980) 422.
[25] 李雅明,”固態電子學”.全華科技圖書股份有限公司,1997年。
[26] C. M. Bhandari, Rowe, D. M., “Thermopower conduction in semiconductors”,
Wiley New Delhi (1988).
[27] 劉君愷,”熱電技術發展現況”,材料世界網,2009年。
[28] 許家展、李文錦,”從ICT2012看全球熱電技術發展趨勢與應用(下)”, 工研院材化所,2012年。
[29] B. Fang, Z. Zeng, X. Yan, and Z. Hu, “Effects of annealing on thermoelectric properties of Sb2Te3 thin-films prepared by radio frequency magnetron sputtering”, J Mater Sci: Mater Electron, 24 (2013)1105.
[30] N. Peranio, M. Winkler, Z. Aabdin, J. KÖnig, H. BÖttner, and O. Eibl, “Room temperature MBE deposition of Bi2Te3 and Sb2Te3 thin films with low charge carrier densities”, Phys. Status Solidi A, 209 (2012) 289.
[31] O. Vigil-Galán1, F. Cruz-Gandarilla, J. Fandiño, F. Roy, J. Sastré-Hernández, and G. Contreras-Puente, “Physical properties of Bi2Te3 and Sb2Te3 films deposited by close space vapor transport”, Semicond. Sci. Technol., 24 (2009) 025025.
[32] X. Duan, J. Yang, C. J. Xiao and W. Zhu, “Structural and thermoelectric properties of Ag-doped Bi2(Te0.95 Se0.05)3 thin films prepared by flash evaporation”, J. Phys. D: Appl. Phys., 40 (2007) 5971.
[33] L.J. Swartzendruber, “Four-point probe measurement of non-uniformities in semiconductor sheet resistivity” Solid-State Electron., 7 (1964) 413.
[34] K. S. Dieter, “Semiconductor materials and device characterization”. A Wiliey-Interscience Publication, New York (1990).
[35] J. A. Venables, G. L. Price, “Nucleation of thin films” Epitaxial Growth, ed. J. W. Matthews, New York: Academic Press, 381 (1975).
[36] L. H. Van Vlack, “Elements of Materials Science and Engineering”, Addison (1980).
[37] Y. Zhao, J. S. Dyck, B. M. Hernandez, and C. Burda, “Improving Thermoelectric Properties of Chemically Synthesized Bi2Te3-Based Nanocrystals by Annealing”, J. Phys. Chem. C, 114 (2010) 11607.
[38] M. Takashiri, K. Miyazaki, and H. Tsukamoto, “Structural and thermoelectric properties of fine-grained Bi0.4Te3.0Sb1.6 thin films with preferred orientation deposited by flash evaporation method”, Thin Solid Films, 516 (2008) 6336.
[39] C. N. Liao, K. M. Liou, and H. S. Chu, “Enhancement of thermoelectric properties of sputtered Bi–Sb–Te thin films by electric current stressing”, Appl. Phys. Lett., 93 (2008) 042103.
[40] J. Yang, R. Chen, Xi´an Fan, S. Bao, and W. Zhu, “Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing”, J. Alloy. Compd., 407 (2006) 330.
[41] H.J. Goldsmid, “The electrical conductivity and thermoelectric power of bismuth telluride”. Proc. Phys. Soc.,71 (1958) 633.
[42] A. F. Ioffe, “Semiconductor thermoelements and thermoelectric cooling”. Phys. Today, 12 (1959) 45.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 174.129.59.198
論文開放下載的時間是 校外不公開

Your IP address is 174.129.59.198
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code