Responsive image
博碩士論文 etd-0801113-171617 詳細資訊
Title page for etd-0801113-171617
論文名稱
Title
氫鍵作用力在聚氧代氮代苯并環己烷複合材料的應用
The Application of Hydrogen Bonding in Polybenzoxazine Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-22
繳交日期
Date of Submission
2013-09-01
關鍵字
Keywords
聚氧代氮代苯并環己烷、氫鍵作用力、超疏水表面、高分子摻合、嵌段共聚物、複合材料
Superhydrophobic surface, Polymer blends, Polybenzoxazines, Block copolymer, Hydrogen-bonding, Composite
統計
Statistics
本論文已被瀏覽 5730 次,被下載 768
The thesis/dissertation has been browsed 5730 times, has been downloaded 768 times.
中文摘要
本實驗經由bis-phenol A、paraformaldehyde 及allylamine合成出allylamine based benzoxazine (B-ala)。Polybenzoxazine (PBZ)系列的高分子因為氫鍵作用力的關係,在benzoxazine單體經加熱開環交聯硬化處理後會具有疏水性,而經由UV光照射後,會呈現親水性。透過熱處理與照射UV光,可以改變材料表面分子間與分子內氫鍵作用力。PBZ薄膜表面經過UV光照射會使O–H⋅⋅⋅O=C形式的分子間氫鍵增加進而造成表面成親水性,而透過再次加熱後,分子間氫鍵又會轉回O–H⋅⋅⋅N形式之分子內氫鍵,薄膜表面又會回到原本疏水的狀態。利用此現象的特點,實驗時利用簡單的方法製備了PBZ/silica的混摻薄膜,並發現這樣的薄膜在UV光照射和熱處理的過程也具備親、疏水的可逆性。
第二部份的實驗經由4-hydroxybenzyl alcohol、aniline和三聚甲醛 paraformaldehyde合成出benzoxazine單體(Pa-OH)以及利用開環聚合的方法合成嵌段共聚物PEO-b-PCL。由於polybenzoxazine樹脂有著硬、脆的缺點,因此可利用高分子混摻(Polymer Blends)的方式,將PEO-b-PCL導入polybenzoxazine與雙邊雙官能基環氧樹脂所組成的基材中,實驗結果可以發現,隨PEO-b-PCL比例的上升,材料的Tg也隨之下降,而且透過機械性質分可以發現,在常溫下,導入PEO-b-PCL的儲存模數比沒有混摻PEO-b-PCL下降至原本1/3,除了達到增韌之效果外,同時還具有該系統不易見到的可撓曲性。
Abstract
In this experiment we figure out the reversible surface properties (hydrophilicity, hydrophobicity) of a polybenzoxazine (PBZ) thin film through simple application of alternating UV illumination and thermal treatment. The fraction of inter-molecularly hydrogen bonded O–H⋅⋅⋅O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋅⋅⋅N intramolecular hydrogen bonding. Taking advantage of these phenomena, the PBZ/silica nanocomposite coating through were prepared via two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.
And the second part of the experiment is related to the toughening effect on polymer composites of amphiphilic block copolymers, polybenzoxazine and epoxy blends. The polybenzoxazine resins have two drawbacks of hard and brittle. The polymer-blending method can be utilized to solve this problem. In order to improve the toughness properties of polybenzoxazine resin, we introduced the PEO-b-PCL diblock copolymer to the matrix which is a mixture of polybenzoxazine and epoxy. The glass transition temperature (Tg) of the blended materials decreased with the increasing ratio of PEO-b-PCL. In the mechanical analysis, it can obviously figure out that the storage modulus of PEO-b-PCL contained material decreased at least 1/3 times to an order than the original matrix. It is proven that the toughening phenomena in this polymer blending system exist.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
Abstract iv
摘要 v
目錄 vi
表目錄 x
圖目錄 xi

第一章 緒論 1
1-1 前言 1
l-2 超疏水表面製備和發展 2
l-3 高分子混摻功能性互補材料 2
l-4 研究動機 3

第二章 理論及文獻回顧 4
2-1 Benzoxazine 與Polybenzoxazine 介紹 4
2-1.1 Benzoxazine 與Polybenzoxazine 之研究發展 4
2-1.2 Benzoxazine 單體及Polybenzoxazine 高分子的合成 5
2-1.3 Benzoxazine衍生物合成方法之改良 6
2-2表面接觸角簡介 7
2-2.1 液滴的表面濕潤現象 7
2-2.2 表面接觸角 8
2-3超疏水材料 9
2-3.1 超疏水條件 9
2-3.2 蓮花效應原理和應用 9
2-3.3 水黽腿部疏水現象和未來展望 11
2-3.4 常見超疏水材料之製備與作用機制 12
2-3.5 表面粗糙度與潤濕現象 12
2-4 氫鍵作用力(Hydrogen-bonding interaction) 15
2-4.1 Polybenzoxazines內部的氫鍵作用力 15
2-5 嵌段共聚物(Block copolymer) 16
2-6 高分子摻合原理 17
2-6.1 氫鍵於混摻系統之原理 18

第三章 實驗方法及步驟 21
3-1實驗內容及流程 21
3-2實驗藥品 22
3-3 Polybenzoxazine親/疏水可逆轉換實驗步驟 23
3-3.1 合成雙邊Benzoxazine單體(B-ala) 23
3-3.2 親、疏水試片之製作 23
3-4 氫鍵作用力於高分子混摻之影響實驗步驟 24
3-4.1 合成Benzoxazine單體( Pa-OH ) 24
3-4.2 合成嵌段共聚物Poly(ε-caprolactone)-b-Poly(ethylene glycol) 24
3-4.3 將PEO-b-PCL導入Polybenzoxazine/Epoxy 基材 25
3-5儀器介紹 26
3-5.1 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 型號: Varian® Unity Inova-500。 26
3-5.2 傅利葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 型號﹕Bruker Tensor-27 27
3-5.3紫外光/可見光吸收光譜儀(Ultraviolet/Visible Spectrophotometer) 型號﹕Perkin Elmer UV/Vis Lambda 35 28
3-5.4化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis ,ESCA) 型號﹕PHI 5000 VersaProbe 28
3-5.5 接觸角分析儀(Contact Angle Analyzer) 型號﹕Data Physics OCA20 29
3-5.6 凝膠滲透層析儀(Gel Permeation Chromatography , GPC) 型號: Jasco PU-980 30
3-5.7微差掃瞄卡計(Differential Scanning Calorimeter, DSC) 型號:TA Q-20 30
3-5.8熱重分析儀(Thermal Gravimetric Analyzer, TGA) 型號:TA Q-50 31
3-5.9 動態黏彈機械分析儀(Dynamic Mechanical Analyzer, DMA)型號: Perkin Elmer DMA8000 32

第四章 結果與討論 33
4-1 Polybenzoxazine薄膜之親/疏水可逆轉換表面分析 33
4-1.1 Allylamine-Based Benzoxazine (B-ala)之鑑定分析 33
4-1.2 PB-ala親/疏水表面之接觸角分析 35
4-1.3 PB-ala親/疏水表面之全反射式紅外線光譜分析 39
4-1.4 PB-ala親/疏水表面之XPS/ESCA光電子能譜分析 41
4-1.5奈米粒子對 PB-ala親/疏水表面之接觸角影響 46
4-1.6 PB-ala混摻SiO2奈米粒子薄膜之親/疏水表面結構觀察 48
4-1.7 PB-ala混摻SiO2奈米粒子薄膜之液滴潤濕現象分析 51
4-2兩性嵌段共聚物混摻Polybenzoxazine及Epoxy複合材料之增韌性質 53
4-2.1 Pa-OH benzoxazine與嵌段共聚物PEO-b-PCL之鑑定分析 53
4-2.2 PEO-b-PCL混摻Pa-OH/ Epoxy基材之Tg、Tf分析 54
4-2.3 PEO-b-PCL 混摻Pa-OH/Epoxy 基材之結晶溫度(Tc)分析 56
4-2.4 PEO-b-PCL混摻Pa-OH/Epoxy 基材之熱裂解分析 57
4-2.5 傅立葉轉換紅外線光譜儀(FTIR)之分析 58
4-2.6 PEO-b-PCL混摻Pa-OH/Epoxy 基材之顯微影像分析 60
4-2.7 PEO-b-PCL混摻Pa-OH/Epoxy 基材之機械性質分析 63
4-2.8 PEO-b-PCL混摻Pa-OH/Epoxy 複合材料之可撓曲性質分析 65

第五章 結論 66

第六章 參考文獻 67
參考文獻 References
1. Reghunadhan Nair, C. P. Prog. Polym. Sci. 2004, 29, 401.
2. Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1.
3. Park, P.; Zimmerman, S. C. J. Am. Chem. Soc. 2006, 128, 11582.
4. Kim, J. K.; Jang, J.; Lee, D. H.; Ryu, D. Y. Macromolecules 2004, 37, 8599.
5. Jeon, H. K.; Kim, J. K. Macromolecules 2000, 30, 8200.
6. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 5224.
7. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 4089.
8. Kuo, S. W.; Huang, W. J.; Huang, C. F.; Chan, S. C.; Chang, F. C. Macromolecules 2004, 37, 4164.
9. He, Y.; Zhu, B.; Inoue Y. Prog. Polym. Sci. 2004, 29, 1021.
10. Chien, Y. Y.; Perace, E. M.; Kwei, T. K. Macromolecules 1988, 21, 1616.
11. Kuo, S. W.; Chang, F. C. Polymer 2001, 42, 9843.
12. Watson, J. D.; Berry, A. DNA: The Secret of Life; Knopf: New York, 2003.
13. Wang, C. F.; Chang, F. C. Angew. Chem. Int. Ed., 2006, 45, 2248.
14. Kim, H.D.; Ishida, H. J. Phys. Chem. A., 2002, 106, 3271.
15. Holly, F. W.; Cope, C. J. Am. Chem. Soc. 1944, 66, 1875.
16. Burke, W. J. J. Am. Chem. Soc. 1949, 71, 609.
17. Ning, X.; Ishida, H. J. Polym. Sci. Part A 1994, 32, 1121.
18. Wang, C. F.; Chang, F. C.; Kuo, S. W. Handbook of Polybenzoxazine, Ishida, H.; Agag, T. Eds., Elsevier, Amsterdam 2011, Chapter 33, 579.
19. Rodriguez, Y.; Ishida, H. Polymer 1995, 36, 3151.
20. Brunoska, Z.; Lin, J. P. Ishida, H. Macromol. Chem. Phys. 1999, 200, 1745.
21. MA, K.; Chung T. S.; Good, R. J. J. Polym. Sci. Part B 1998, 36, 2327.
22. Rafael, T. Langmuir 2004, 20, 7659.
23. Blossey, R. Nature Materials 2003, 2, 301.
24. Herminghaus, S. Europhys. Lett. 2000, 52, 165.
25. Gao, X.; Jiang, L. Nature 2004, 432, 36.
26. Tsibouklis, J.; Nevell, T. G. Adv. Mater. 2003, 14, 647.
27. Carlson, D. P.; Schmiegel, W. Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft: Weinheim, Germany, 1988, 393.
28. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
29. Cassie, A. B. D. and Baxter, S. Trans. Faraday Soc. 1944, 40, 546.
30. Cassie, A. B. D. and Baxter, S. J. Text. Inst., 1945, 36, T67.
31. Jiang, L.; Zhu, D. Angew. Chem. Int. Ed. 2004, 43, 357.
32. Ma, K. X.; Chung, T. S. J. Phys. Chem.B 2001, 105, 4145.
33. Masten, M. W.; Bate, F. S. Macromolecules 1996, 29, 1091.
34. Semenov, A. N. Sov. Phys. JETP 1958, 61, 733.
35. Barlow, J. W.; Paul, D. R. Polym. Eng. Sci. 1984, 24, 525.
36. Gaylord, N. G. J. Macromol. 1989, 28, 1211.
37. Pimemtel, G. C.; McClellan, A. L. The Hydrogen Bond W. H. Freeman and Co. San Francisco and London, 1960, 6.
38. Yang, X.; Painter, P. C.; Coleman, M. M.; Pearce, E. M.; Kwei, T. K. Macromolecules 1992, 25, 2156.
39. Coleman, M. M.; Yang, X.; Painter, P. C.; Graf, J. F. Macromolecules 1992, 25, 4414.
40. Coleman, M. M.; Yang, X.; Zhang, H.; Painter, P. C.; Scherer Jr, K. V. J. Polym. Sci., Polym. Chem. Edn 1993, 31, 2039.
41. Coleman, M. M.; Yang, X.; Zhang, H.; Painter, P. C. J. Macromol. Sci. Phys. 1993, B32, 295.
42. Coleman, M. M.; Yang, X.; Painter, P. C.; Kim, Y. H. J. Polym. Sci., Polym. Chem. Edn 1994, 32, 1817.
43. Macko, J. A.; Ishida, H. J Polym Sci Part B 2000, 38, 2687.
44. Riess, G.; Schwob, J. M.; Guth,G.; Roche, M.; Lande, B. Advances in Polymer Synthesis, Plenum, New York, 1985.
45. Chang, F. M.; Hong, S. J.; Sheng, Y. J. and Tsao, H. K. Appl. Phys. Lett. 2009, 95, 064102.
46. Ishida, H.; Lee, Y. H. J Polym Sci, Part B: Polym Phys. 2001, 39, 736.
47. Lu, H.; Zheng, S. Polymer 2003, 44, 4689.
48. Zheng, S.; Lu, H.; Guo, Q. Macromol. Chem. Phys. 2004, 205, 1547.
49. Guo, Q.; Harrats, C.; Groeninckx, G.; Reynaers, H.; Koch, M.H. J. Polymer 2001, 42, 6031.
50. Kuo, S. W.; Lin, C. L.; Chang, F. C. Macromolecules 2002, 35, 278.
51. Rimdusit, S.; Pirstpindvong, S.; Tanthapanichakoon, W.; Damrongsakkul, S. Polym. Eng. Sci. 2005, 45, 288.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code