Responsive image
博碩士論文 etd-0801114-112251 詳細資訊
Title page for etd-0801114-112251
論文名稱
Title
空蝕與紊流模型之最佳化研究以及比較
Optimal and comparison of cavitation and turbulence models
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-23
繳交日期
Date of Submission
2014-09-01
關鍵字
Keywords
凝結、蒸發、紊流模型、空蝕模型、多相流
Cavitation Model, Turbulence Model, Vaporization, Multiphase Flow, Condensation
統計
Statistics
本論文已被瀏覽 5669 次,被下載 461
The thesis/dissertation has been browsed 5669 times, has been downloaded 461 times.
中文摘要
在空蝕模型中有許多可調經驗係數的存在,其中控制空蝕強度的為蒸發及凝結係數,然而文獻中可以發現各學者即便用相同空蝕模型,所使用的蒸發、凝結係數卻不盡相同,這顯示係數的選取可能受到很多因素的影響,如幾何的改變、紊流模型選用的不同,都有可能造成係數選取的不同。此外,在空蝕模型中的係數若為有因次的,當流場中的特徵尺寸變動,這些可調參數可能就會造成空蝕模型產生無法保持動態相似的問題。一般來說,非穩態的空蝕流場對於係數的敏感性又比穩態流場來得高。在此研究中,將針對不同之空蝕模型透過使用不同的幾何,以分析蒸發及凝結係數的敏感度。並利用動態相似的概念,將係數全調整為無因次觀察這些係數的敏感度,希望在不同幾何、空蝕強度或是紊流模型之下,規範出係數之合理使用範圍。
Abstract
The cavitation models are used to predict the dynamics of cavitation phenomenon. There are many tunable constants which is empirical-based in the cavitation models such as evaporation and condensation coefficient. Because of dynamic similarity issue, geometry change, turbulence models and other numerical details, there are various constants in different researches. In this paper, the dynamic similarity issue will be investigated and the sensitivity of the empirical constants and the interplay with turbulence models will be assessed by multiple steady attached and unsteady cloud cavitation problems in terms of experimental validations. The goal of this paper is to show the sensitivity and generality of the adjusted constants of different cavitation models.
目次 Table of Contents
審定書 i
摘要 ii
Abstract. iii
目錄 iv
表次 vi
圖次 vii
第一章 緒論 1
1.1 研究背景 1
1.2文獻回顧 3
1.2.1實驗 3
1.2.2空蝕模型 4
1.2.3紊流模型 9
1.3研究目的 11
第二章 研究方法 12
2.1 數學模型 12
2.2空蝕模型 13
2.3 紊流模型 17
2.4 數值方法及邊界條件 18
第三章 研究結果 19
3.1流場配置及網格測試 19
3.2 研究流程 22
3.3 Singhal 空蝕模型 25
3.4 Zwart空蝕模型 36
第四章 結論與建議 50
參考文獻 References
[1] Buckland, H. C., Masters, I., Orme, J. A. C., Baker, T.,2013, “Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines”, Journal of Power and Energy vol. 227(4),pp. 479–485.
[2] Huang, D.G., Zhuang, Y.Q.,2008, “Temperature and Cavitation,” Journal of Mechanical Engineering Science, vol. 222, pp. 207-211.
[3] Tseng, C. C., Shyy, W.,2010, “Modeling for isothermal and cryogenic cavitatioin,” International Journal of Heat and Mass Transfer, vol. 53, pp. 513-525.
[4] Hosangadi, A., Ahuja, V.,2005, “A Numerical Study of Cavitation in Cryogenic Fluids,” Journal of Fluids Engineering, vol. 127, pp. 267-281.
[5] http://en.wikipedia.org/wiki/Cavitation
[6] Ashley, S.,2001, “Warp drive underwater,” Scientific American
[7] Kubota, A., Kato, H., Yamaguchi, H., Maeda, M.,1989, “Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique,” J. Fluid Eng-T. ASME, vol. 111, pp. 204-210.
[8] Leroux, J.B., Astolfi, J.A., Billare, J.Y.,2004, “An Experimental Study of Unsteady Partial Cavitation,” ASME, vol. 26, pp. 94-101.
[9] Li, C.Y., Ceccio, S.L.,1996, “Interaction of Single Travelling Bubbles with the Boundary Layer and Attached Cavitation,” J. Fluid Mech, vol. 322, pp. 329-353.
[10] Gopalan, S., Katz, J., 2000, “Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation,” Phys. Fluids, vol. 12(4), pp. 895-911.
[11] Xu, W., Wang, C., He, M., Huang, S., Chang, X., 2011, “The Impact Factors of Numerical Computation to Cavitating Flow,” Applied Mechanics and Materials, vol. 88-89, pp. 404-407.
[12] Wang, G., Ostoja-Starzewski, M., 2007, “Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil, ” Applied Mathematical Modelling, vol. 31, pp. 417–447.
[13] Frikha, S., Coutier-Delgosha, O., Astolfi, J. A., 2008, “Influence of the CavitationModel on the Simulation of Cloud Cavitation on 2D Foil Section,” International Journal of Rotating Machinery, pp. 1-12.
[14] Dekterev, A.A., Gavrilov, A. A., Finnikov, K. A., 2009, “Numerical simulation of unsteady cavitating turbulent flow over hydrofoil,” Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer, pp. 14-18.
[15] Morgut, M., Nobile, E., & Biluš, I., 2010, “Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil,” International Journal of Multiphase Flow, vol. 37, pp. 620-626.
[16] Chen, Y., Lu, C. J., 2008, “A homogenous-equilibrium-model based numerical code for cavitation flows and evaluation by computation cases,” Journal of Hydrodynamics, vol. 20(2), pp. 186-194.
[17] Zwart, P. J., Gerber, A. G., Belamri, T., 2004, “A Two-Phase Flow Model for Predicting Cavitation Dynamics,” Proceeding of ICMF 2004 International Conference on Multiphase Flow.
[18] MashudKarim, M., Ahmmed, M. S., 2012, “Numerical study of periodic cavitating flow around NACA0012 hydrofoil,” Ocean Engineering, vol. 55, pp. 81–87.
[19] Kanfoudi, H., Lamloumi, H., Zgolli, R., 2010, “A new model to simulate a cavitating flow,” Proceeding of International Renewable Energy Congress, pp. 310-314.
[20] Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y., 2002, “Mathematical Basis and Validation of the Full Cavitation Model,” Journal of Fluids Engineering, vol. 124, pp. 617-624.
[21] Martynov, S. B., Mason, D. J., Heika, M. R., 2006, “Numerical simulation of cavitation flows based on their hydrodynamic similarity,” Int. J. Engine Res, vol. 7, pp. 283-296.
[22] Zhou, L., Wang, Z., 2007, “Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG k-ε Model,” J. Fluids Eng, vol. 130(1).
[23] Xu, W., Wang, C., He, M., Huang, S., Chang, X., 2011, “The Impact Factors of Numerical Computation to Cavitating Flow,” Applied Mechanics and Materials, vol. 88-89, pp. 404-407.
[24] Li, Z. R., Pourquie1, M., Van Terwisga, T. J. C., 2010, “A numerical study of steady and unsteady cavitation on a 2d hydrofoil,” Journal of Hydrodynamics, vol. 22(5), pp. 770-777.
[25] Johansen, S. T., Wu, J., Shyy, W., 2004, “Filter-based unsteady RANS computations,” International Journal of Heat and Fluid Flow, vol. 25, pp. 10–21.
[26] Nouri, N. M., Mirsaeedi, S. M. H., Moghimi, M., 2010, “Large eddy simulation of natural cavitating flows inVenturi-type sections,” Proc. Journal of Mechanical Engineering Science, vol. 225, pp. 369-381.
[27] Biluš, I. , Predin, A., & Škerget, L., 2007, “The extended homogenous cavitation transport model,” Journal of Hydraulic Research, vol. 45(1), pp. 81-87.
[28] Asnaghi, A., Jahanbakhsh, E., Seif, M. S., 2010, “Unsteady Multiphase Modeling Of Cavitation Around Naca 0015,” Journal of Marine Science and Technology, 18(5), 689-696.
[29] Tamura, Y., Matsumoto, Y., 2009, “Improvement of Bubble model for Cavitating flow Simulations,” Journal of Hydrodynamics, vol. 21(1), pp. 41-46.
[30] Bakir, F., Rey, R., Gerber, A. G., Belamri, T., Hutchinson, B., 2004, “Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer,” International Journal of Rotating Machinery, vol. 10, pp. 15–25.
[31] Bernad, S., Susan-Resiga, R., Muntean, S., Anton, L., 2006, “Numerical Analysis of the Cavitating Flows,” Proceedings of the romanian academy, Series A, vol. 7, pp. 1-13.
[32] Iga, Y., Nohmi, M., Goto, A., Shin, B. R., Ikohagi, T., 2003, “Numerical study of sheet cavitation break-off phenomenon on a cascade hydrofoil,” J. Fluids Eng., vol. 125(4), pp. 643-651.
[33] Ha, C. T., Park, W. G., Merkle, C. L., 2009, “Multiphase Flow Analysis of Cylinder Using A New Cavitation Model,” Proceedings of the 7th International Symposium on Cavitation CAV2009.
[34] Brennen, C. E., 1995, “Cavitation and Bubble Dynamics,” Published by Oxford University Press, Inc.
[35] Liu, D. C., Hong, F. W., Zhao, F., & Zhang, Z. R. (2008). The CFD Analysis of Propeller Sheet Cavitation. Proceeding of 8th ICHD, Nantes, France.
[36] Wikipedia.: Turbulence modeling
[37] Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., 2003, “Evaluation of the TurbulenceModel Influence on the Numerical Simulations of Unsteady Cavitation,” Journal of Fluids Engineering, vol. 125, pp.38-45.
[38] Rouse, H., McNown, J. S., 1948, “Cavitation and Pressure Distribution : head forms at zero angle of yaw,”.
[39] Reboud, J. L., Delannoy, Y., 1994, “Two-phase flow modeling of usteady cavitation,” 2nd Int. Symp.
[40] Shen, Y. S., Dimotakis, P. E., 1989, “The influence of surface cavitation on hydrodynamic forces,” American Towing Tank Conference, 22nd.
[41] Wang, G., Senocak, I., Shyy, W., Ikohagi, T., Cao, S., 2001, “Daynamics of Attached Turbulent Cavitating Flows,” Progress in Aerospace Sciences, vol. 37, pp.551-581.
[42] Mansour, N., Kim, J., Moin, P., 1989, “Near-wall k-epsilon turbulence modeling,” AIAA Journal, vol. 27, pp. 1068-1073.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code