Responsive image
博碩士論文 etd-0801114-120611 詳細資訊
Title page for etd-0801114-120611
論文名稱
Title
鋁合金5182熱軋加工參數之分析與經驗公式之建立
Parameter Analysis and Establishment of Empirical Equations During Hot Rolling Processes of Aluminum Alloy 5182
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
250
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-09-01
關鍵字
Keywords
有限元素模擬、應變、溫度、塑流應力、鋁合金5182、熱軋加工、經驗公式
aluminum alloy 5182, strain, empirical equation, temperature, finite element simulation, flow stress, hot rolling
統計
Statistics
本論文已被瀏覽 5700 次,被下載 38
The thesis/dissertation has been browsed 5700 times, has been downloaded 38 times.
中文摘要
鋁合金5182具有高比強度、電磁遮蔽性、抗蝕性佳及易回收等材料特性,經常應用於罐蓋材、車輛結構件及電子3C產品等領域。熱軋過程中板材應變及溫度顯著地影響微觀組織,進而改變產品的強度及成形性,為提升產品性能,必須掌握熱軋加工參數對板材應變及溫度之影響。過去雖然已有文獻研究應變及溫度對鋁合金5182靜態再結晶組織之影響,然而,並未詳細探討熱軋加工參數對鋁合金5182板材應變及溫度之影響。
本文是應用有限元素分析軟體DEFORM於鋁合金5182板材熱軋加工時之應變及溫度模擬,首先,為瞭解鋁合金5182在高溫成形時材料之塑流應力並且使其能應用於有限元素模擬,使用Gleeble熱機模擬試驗機進行圓柱壓縮試驗來獲得320oC至470oC且應變率0.01 s-1至30.0 s-1之鋁合金5182平均塑流應力,接著透過有限元素法來獲得平均塑流應力與材料塑流應力之關係,以此關係可知當考慮摩擦力之影響時平均塑流應力與材料塑流應力之間僅有2%~4%之誤差,最後以具有雙曲正弦函數之本構方程式來描述塑流應力並且使用最小平方法之運算來獲得本構方程式之參數,本構方程式之預測值與實驗值之間最大誤差約為10%以內。
接著,以改變摩擦係數、壓下率、入口板厚、工輥速度及界面熱傳係數等參數進行熱軋加工有限元素模擬,討論加工參數與邊界條件對軋延過程中板材溫度歷程變化之影響以及輥隙出口處板材等效應變分布與溫度分布,將模擬結果代入文獻提出之靜態再結晶組織變化的預測模型,討論軋延參數與邊界條件對靜態再結晶組織變化之影響。最後整理出軋延參數與邊界條件對板材應變、溫度及靜態再結晶組織之影響機制。
最後,以一系列軋延參數及邊界條件進行有限元素模擬,根據模擬結果及迴歸分析建立預測軋延力、前滑率、出口板材表面溫度、出口板材平均溫度及完軋後板材平衡溫度之經驗公式,接著以連續軋延時板材流動之原理結合預測軋延結果之經驗公式,建立一應用於鋁合金5182熱連軋製程軋延結果之預測模型。此預測模式適用之範圍如下:(1)工輥直徑為700至1000 mm;(2)入口板材厚度為5至50 mm;(3)壓下率為30至60%;(4)庫侖摩擦係數為0.15至0.40;(5)張力與平均變形阻抗之比值為0至0.4;(6)工輥速度為0.1至6.0 m/s;(7)入口板材溫度為320oC至450oC;(8)接觸界面熱傳係數為10至400 kW/m2∙oC。
本論文之研究成果及經驗公式可作為鋁合金5182熱軋製程設計之依據外,塑流應力預測模式亦可提供企業界應用於熱間加工製程之模擬解析,使其模擬結果更為精確。
Abstract
Aluminum alloy 5182 (AA5182) has been widely used in beverage cans, automobile parts, computer, communication and consumer electronics (3C) products for excellent properties, such as high strength-to-weight ratio, electro-magnetic shielding, better corrosion resistance, and recyclable etc. The strain and temperature of the hot rolled strip affect the microstructure of material as well as change the strength and formability of the product. In order to improve the product performance, it is essential to understand the effect of process parameters during hot rolling on the strain and temperature of the strip. Several studies have been published to investigate the effects of strain and temperature on the recrystallization behavior of AA5182 strip during hot rolling. However, only a few studies published discussed the effects of process parameters on the strain and temperature distributions of AA5182 strip during hot rolling.
In this study, the finite element simulations of the strain and temperature distributions of AA5182 during hot rolling were carried out by using a commercial code DEFORM. Firstly, the cylindrical compression tests were performed to obtain the mean flow stress curves of AA5182 at strain rates of 0.01 s-1 to 30.0 s-1 under 320oC to 470oC by using Gleeble thermal-mechanical simulator for understanding the strength of material at elevated temperatures. The mean flow stress curves were applied to simulate the hot rolling of AA5182 strip. The relationships between the mean flow stress obtained by the cylindrical compression test and material flow stress were established by using the finite element simulations. It is known that the error between the mean flow stress and material flow stress is about 2% to 4% during the cylindrical compression test considering the effect of friction at the interface between the cylindrical and anvils. A hyperbolic-sine Arrhenius equation was used to characterize the flow stress curves of aluminum alloy 5182. The parameters of characterization equation were obtained by using experimental data and the least square method. The error between the prediction results obtained by the characterization equation and the experimental data is within 10%.
Secondly, the finite element simulations of hot rolling were carried out to investigate the effects of process parameters and boundary conditions involved reduction in thickness, entry thickness, rolling speed, coefficient of coulomb friction and interfacial heat transfer coefficient on temperature variation of the strip and distributions of strain and temperature in the thickness direction at the roll bite exit. The results of simulations were applied to the prediction model of static recrystallization behavior proposed by literature and discussed the effect of process parameters and boundary conditions mentioned above on static recrystallization behavior. The mechanisms about effects of process parameters and boundary conditions on strain, temperature, and static recrystallization behavior of the strip were proposed.
Finally, the empirical equations were established for predicting rolling force, forward slip ratio, surface temperature and average temperature of strip at the roll bite exit and balance temperature of the strip by regression analysis and simulation results. A prediction model for the rolling results of hot continuous rolling of AA 5182 was also proposed. The parameters applicable of the prediction model proposed are as follow: the work roll diameter is 700 to 1000 mm, the entry thickness 5 to 50 mm, the reduction in thickness 30% to 60%, the coefficient of coulomb friction 0.15 to 0.40, the ratio between tension and mean deformation resistance 0 to 0.4, the speed of work roll 0.1 to 6.0 m/s, the entry temperature 320oC to 450oC, the interfacial heat transfer coefficient 10 to 400 kW/m2∙oC.
The results of this study and the empirical equations proposed can provide useful knowledge for rolling pass schedule design during hot rolling process of AA 5182. In addition, flow stress characterization equation proposed can improve the accuracy of simulation results of hot forming processes in industrial and academic fields.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
英文摘要 v
總目錄 viii
表目錄 xii
圖目錄 xiv
符號說明 xx
第一章 緒論 1
1-1 前言 1
1-2 鋁合金熱軋製程簡介 2
1-2-1 生產流程 2
1-2-2 軋延設備 3
1-2-3 熱軋組織與性能變化 5
1-3 文獻回顧 6
1-3-1 塑流應力之研究 6
1-3-2 熱軋製程之研究 9
1-3-3 軋延結果預測之研究 11
1-4 本論文之研究方向 13
1-5 本論文之架構 15
第二章 板材熱軋加工之有限元素模型 24
2-1 有限元素法簡介 24
2-2 有限元素分析軟體DEFORM 25
2-2-1 基本理論 25
2-2-2 軟體架構 29
2-2-3 分析模式 29
2-2-4 材料模式 29
2-3 板材熱軋之有限元素模型 31
2-3-1 板材軋延之原理 31
2-3-2 板材溫度變化之分析模式 31
2-3-3 有限元素模型 33
2-4 有限元素模擬之進行流程 37
第三章 鋁合金5182之塑流應力 45
3-1 圓柱壓縮試驗 46
3-1-1 Gleeble熱機模擬試驗機 46
3-1-2 實驗規劃及流程 47
3-1-3 實驗結果 49
3-2 圓環壓縮試驗 50
3-2-1 實驗規劃及流程 51
3-2-2 摩擦係數校正曲線 52
3-3 塑流應力之修正 53
3-3-1 摩擦力之修正 53
3-3-1-1切片法 54
3-3-1-2有限元素法 59
3-3-2 變形熱之修正 63
3-4 塑流應力預測模式 64
3-4-1 塑流應力之本構方程式 64
3-4-2 最小平方法原理 65
3-4-3 最小平方法運算流程 67
3-4-4 塑流應力預測模式 69
3-4-5 塑流應力預測模式適用範圍之探討 70
3-4-5-1 Takuda塑流應力預測模式 71
3-4-5-2 預測模式之比較 72
3-5 結論 74
第四章 鋁合金5182板材熱軋加工之有限元素模擬 103
4-1 再結晶組織與軋延參數之關係 104
4-1-1 Avrami方程式 104
4-1-2 再結晶組織變化之數學模型 105
4-2 熱軋加工參數對板材溫度歷程之影響 106
4-3 熱軋加工參數對板材變形及再結晶組織之影響 111
4-4 鋁合金5182板材之熱軋實驗 117
4-4-1 實驗流程 117
4-4-2 實驗結果與有限元素模擬結果之比較 118
4-5 結論 120
第五章 鋁合金5182板材熱軋加工之軋延結果預測模式 162
5-1 軋延結果預測模式 164
5-1-1 研究方法 164
5-1-2 熱軋加工參數之規劃 164
5-1-3 有限元素模擬之數據擷取 167
5-1-4 軋延結果預測模式之建立 168
5-1-5 軋延結果預測模式之整合 172
5-1-6 板材平衡溫度之預測模式 177
5-2 軋延結果預測模式於熱連軋製程之應用 179
5-2-1 連續軋延時板材流動之原理 180
5-2-2 鋁合金5182板材熱連軋製程之軋延結果預測模型 180
5-3 結論 183
第六章 總結與未來展望 209
6-1 總結 209
6-2 未來展望 212
參考文獻 213
作者簡介及發表著作 224
參考文獻 References
[1] Y. Baba, “Review and prospect on technical development of aluminum,” Sumitomo Light Metal Technical Reports, vol. 41, pp. 91-121, 2000.
[2] 劉文海, “2012年台灣鋁產業回顧與展望,” 鍛造, vol. 22, pp. 1-7, 2013.
[3] B. Roebuck, J. D. Lord, M. Brooks, M. S. Loveday, C. M. Sellars, and R. W. Evans, “Measurement of flow stress in hot axisymmetric compression tests,” Materials at High Temperatures, vol. 23, pp. 59-83, 2006.
[4] A. Ichijo and M. Akiyama, “Precision of measured stress and strain in compression test for cylindrical specimen,” Journal of the Japan Society for Technology of Plasticity, vol. 52, pp. 558-563, 2011.
[5] T. Daito, T. Takaai, H. Wazumi, and Y. Nagano, “Influence of anisotropy on compressive characteristics of 5083 aluminum alloy sheet,” Journal of Japan Institute of Light Metals, vol. 34, pp. 331-336, 1984.
[6] S. Takahashi, “The distribution of contact pressures in compressing cylinderical specimens,” Journal of the Japan Society for Technology of Plasticity, vol. 6, pp. 271-279, 1965.
[7] S. Takahashi, “The effect of inhomogeneous plastic flow on contact pressure distribution,” Journal of the Japan Society for Technology of Plasticity, vol. 7, pp. 417-423, 1966.
[8] E. C. Larke, “The rolling of strip, sheet and plate,” Chapman and Hall, 1963.
[9] A. Forcellese, F. Gabrielli, F. Micari, and O. Zurla, “Computer simulation of metal flow in the hot upsetting of a high-strength aluminium alloy,” Journal of Materials Processing Technology, vol. 39, pp. 83-99, 1993.
[10] M. Tsukuda, K. Takada, and K. Ozaki, “Resistance to plastic deformation of aluminum alloys ingot,” Journal of Japan Institute of Light Metals, vol. 28, pp. 85-92, 1978.
[11] M. Motomura, S. Shimamura, and T. Nishimura, “On relating the resistance to deformation of commercial pure aluminum and aluminum alloy to strain, strain rate and temperature,” Journal of Japan Institute of Light Metals, vol. 26, pp. 432-440, 1976.
[12] N. Chida, H. Kimura, and Y. Baba, “Study on the flow stress of aluminum and aluminum alloys at high temperature,” Sumitomo Light Metal Technical Reports, vol. 19, pp. 3-11, 1978.
[13] H. Takuda, S. Kikuchi, and N. Hatta, “Modeling of comprehensive formula for flow curves of aluminium alloys at elevated temperatures,” Journal of the Japan Society for Technology of Plasticity, vol. 34, pp. 165-170, 1993.
[14] N. Chida, “Study on the flow stress of aluminum and aluminum alloy at high temperature,” Sumitomo Light Metal Technical Reports, vol. 21, pp. 57-61, 1980.
[15] C. M. Sellars and W. J. M. Tegart, “Relationship between strength and structure in deformation at elevated temperatures,” Memories of Scientific Review Metallurgy, vol. 63, pp. 731-746, 1966.
[16] W. A. Wong and J. J. Jonas, “Aluminum extrusion as a thermally activated process,” Transactions of the Metallurgical Society of AIME, vol. 242, pp. 2271-2280, 1968.
[17] H. Shi, A. J. McLaren, C. M. Sellars, R. Shahani, and R. Bolingbroke, “Constitutive equations for high temperature flow stress of aluminium alloys,” Materials Science and Technology, vol. 13, pp. 210-216, 1997.
[18] A. Gholamzadeh and A. Karimi Taheri, “The prediction of hot flow behavior of Al–6%Mg alloy,” Mechanics Research Communications, vol. 36, pp. 252-259, 2009.
[19] C. Gan, Y. Xue, and M. Wang, “Prediction of the flow stress of Al6061 at hot deformation conditions,” Materials Science and Engineering: A, vol. 528, pp. 4199-4203, 2011.
[20] H. Zhang, G. Y. Lin, D. S. Peng, L. B. Yang, and Q. Q. Lin, “Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation,” Journal of Materials Processing Technology, vol. 148, pp. 245-249, 2004.
[21] Y. C. Lin, L.-T. Li, and Y.-C. Xia, “A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy,” Computational Materials Science, vol. 50, pp. 2038-2043, 2011.
[22] T. Miyanaga, S. Hishikawa, and H. Kobayashi, “Rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 45, pp. 101-114, 1995.
[23] Y. Okamura and M. Kokubo, “Recent 30-years advances and future prospects in aluminum rolling technology,” Sumitomo Light Metal Technical Reports, vol. 42, pp. 155-163, 2001.
[24] E. Hirosawa and T. Uno, “Analysis of temperature distribution of aluminum slabs in heating process,” Sumitomo Light Metal Technical Reports, vol. 14, pp. 21-27, 1973.
[25] J. Kokado, “A foundamental study on the predictive calculation of temperature of sheet steel during continuous hot rolling,” Journal of the Japan Society for Technology of Plasticity, vol. 11, pp. 816-824, 1970.
[26] H. Kimura, “Temperature calculation in hot rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 35, pp. 381-387, 1985.
[27] B. K. Chen, P. F. Thomson, and S. K. Choi, “Temperature distribution in the roll-gap during hot flat rolling,” Journal of Materials Processing Technology, vol. 30, pp. 115-130, 1992.
[28] C. O. Hlady, J. K. Brimacombe, I. V. Samarasekera, and E. B. Hawbolt, “Heat transfer in the hot rolling of metals,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 26, pp. 1019-1027, 1995.
[29] T. Yoneyama, H. Asaoka, H. Kimuura, I. Hoshino, and M. Kokubo, “Heat transfer and roll surface temperature in the hot rolling of aluminum sheet,” Sumitomo Light Metal Technical Reports, vol. 41, pp. 59-69, 2000.
[30] M. Bagheripoor and H. Bisadi, “Effects of rolling parameters on temperature distribution in the hot rolling of aluminum strips,” Applied Thermal Engineering, vol. 31, pp. 1556-1565, 2011.
[31] H. Kimura, “Application of Orowan theory to hot rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 35, pp. 222-227, 1985.
[32] T. Watanabe, “Tribology of aluminium alloy in rolling,” Sumitomo Light Metal Technical Reports, vol. 52, pp. 95-100, 2011.
[33] M. A. Wells, D. M. Maijer, S. Jupp, G. Lockhart, and M. R. van der Winden, “Mathematical model of deformation and microstructural evolution during hot rolling of aluminium alloy 5083,” Materials Science and Technology, vol. 19, pp. 467-476, 2003.
[34] N. Raghunathan, M. A. Zaidi, and T. Sheppard, “Recrystallization kinetics of Al–Mg alloys AA 5056 and AA 5083 after hot deformation,” Materials Science and Technology, vol. 2, pp. 938-945, 1986.
[35] M. A. Wells, D. J. Lloyd, I. V. Samarasekera, J. K. Brimacombe, and E. B. Hawbolt, “Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part I. Microstructural evolution,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 29 B, pp. 611-620, 1998.
[36] M. A. Wells, D. J. Lloyd, I. V. Samarasekera, J. K. Brimacombe, and E. B. Hawbolt, “Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part III. Overall model development and validation,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 29 B, pp. 709-719, 1998.
[37] M. S. Mirza, C. M. Sellars, K. Karhausen, and P. Evans, “Multipass rolling of aluminium alloys: finite element simulations and microstructural evolution,” Materials Science and Technology, vol. 17, pp. 874-879, 2001.
[38] H. Ahmed, M. A. Wells, D. M. Maijer, G. Lockhart, and M. R. Winden, “Mathematical modeling of multipass hot deformation of aluminum alloy AA5083—Model development and validation,” Metallurgical and Materials Transactions A, vol. 38, pp. 922-935, 2007.
[39] E. Wakamatsu, S. Kiuchi, and J. Yanagimoto, “Finite-element analysis of strip rolling and regression formulas of temperature distribution―Formulation of temperature distribution of workpiece in hot rolling I,” Journal of the Japan Society for Technology of Plasticity, vol. 44, pp. 45-49, 2003.
[40] M. Iwasaki, S. Yanagi, M. Ikeda, H. Kunii, K. Ihara, and A. Saji, “Models for predicting rolling temperature and rolling load in aluminum plate hot rolling process,” KOBE Steel Engineering Reports, vol. 62, pp. 2-7, 2012.
[41] 日本鐵鋼協會共同研究會壓延理論部會, “板圧延の理論と実際,” 日本鐵鋼協會, p. 19, p. 287, p. 290,1984.
[42] H. Kimura, “Mathematical models for computer control of hot rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 35, pp. 678-688, 1985.
[43] W. J. Kwak, Y. H. Kim, H. D. Park, J. H. Lee, and S. M. Hwang, “FE-based on-line model for the prediction of roll force and roll power in hot strip rolling,” ISIJ International, vol. 40, pp. 1013-1018, 2000.
[44] T. Kuboki, H. Furuta, S. Murakami, and K. Kuroda, “Theoretical analysis of tandem stand rolling using three-dimensional finite element method,” Journal of the Japan Society for Technology of Plasticity, vol. 41, pp. 701-705, 2000.
[45] J. Yang, Y. Chen, Z. Zhao, H. Sun, and H. Che, “Study on forward slip model for aluminum hot tandem rolling,” Journal of Information and Computational Science, vol. 10, pp. 6101-6112, 2013.
[46] 日本塑性加工學會, “板圧延,” CORONA Publishing Co., Ltd., pp. 6-8, 1993.
[47] Y. Hirose, “Rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 30, pp. 287-297, 1980.
[48] K. Matsui, “Rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 40, pp. 156-168, 1990.
[49] S. Kobayashi, S. I. Oh, and T. Altan, in “Metal forming and the finite-element method,” Oxford University Press Oxford, pp. 2-3, 1989.
[50] S. Kobayashi, S. I. Oh, and T. Altan, in “Metal forming and the finite-element method,” Oxford University Press Oxford, 1989.
[51] 日本塑性加工學會, “非線性有限要素法,” CORONA Publishing Co., Ltd., 1994.
[52] T. R. Chandrupatla and A. D. Belegundu, “Introduction to finite elements in engineering,” Prentice Hall, 1997.
[53] 大矢根守哉, “新編塑性加工學,” 養賢堂, pp. 217-219, 2010.
[54] DEFORM, “DEFORM 3D version 6.1 user’s manual,” Scientific Forming Technologies Corporation, pp. 275-286, 2008.
[55] W. F. Hosford and R. M. Caddell, “Metal forming: mechanics and metallurgy,” Prentice-Hall International, pp. 39-40. 1993.
[56] S. Kobayashi, S. I. Oh, and T. Altan, in “Metal forming and the finite-element method,” Oxford University Press Oxford, pp. 73-89, 1989.
[57] DEFORM, “DEFORM 3D version 6.1 user’s manual,” Scientific Forming Technologies Corporation, p. 16, 2008.
[58] DEFORM, “DEFORM 3D version 6.1 user’s manual,” Scientific Forming Technologies Corporation, p. 43, 2008.
[59] DEFORM, “DEFORM 3D version 6.1 user’s manual,” Scientific Forming Technologies Corporation, pp. 112-114, 2008.
[60] H. Yoshida, K. Isobe, Y. Hirose, T. Naoi, K. Hamada, and Y. Itoh, “A mathematical model of rolling load estimation in hot strip mills,” Journal of the Japan Society for Technology of Plasticity, vol. 23, pp. 63-70, 1982.
[61] 陳正宗, 洪宏基, “邊界元素法,” 新世界出版社, pp. 375-377, 1992.
[62] http://www.yamanaka-eng.co.jp/index.html, Yamanaka Eng Co., Ltd.
[63] S. Shida, “Effect of carbon content, temperature and strain rate on compressive flow-stress of carbon steels (Resistance to deformation of carbon steels at elevated temperature, 1st report),” Journal of the Japan Society for Technology of Plasticity, vol. 9, pp. 127-132, 1968.
[64] H. Zhang, D. S. Peng, L. B. Yang, and L. P. Meng, “Flow stress equation for multipass hot-rolling of aluminum alloys,” Journal of Central South University of Technology (English Edition), vol. 8, pp. 13-17, 2001.
[65] 張新明, “鋁熱連軋原理與技術,” 中南大學出版社, p. 48, 2010.
[66] F. K. Chen and C. J. Chen, “On the Nonuniform Deformation of the Cylinder Compression Test,” Journal of Engineering Materials and Technology, vol. 122, pp. 192-197, 2000.
[67] 張新明, “鋁熱連軋原理與技術,” 中南大學出版社, p. 62, 2010.
[68] B. Roebuck, M. Brooks, and M. G. Gee, “Load cell ringing in high rate compression tests,” National Physical Laboratory Report, MATC(MN)18, pp. 1-8, 2002.
[69] 久能木真人, “軸方向圧縮荷重を受ける中空円筒の塑性変形に就いて,” 科学研究所報告, vol. 30, pp. 63-92, 1954.
[70] A. T. Male and M. G. Cockcroft, “A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation,” Journal of the Institute of Metals, vol. 93, pp. 38-46, 1964.
[71] A. T. Male and V. Depierre, “The validity of mathematical solution for determining friction from the ring compression test,” Journal of Lubrication Technology, vol. 92, pp. 389-395, 1970.
[72] C. H. Lee and T. Altan, “Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders,” Journal of Engineering for Industry, vol. 94, pp. 775-782, 1972.
[73] W. F. Hosford and R. M. Caddell, “Metal forming: mechanics and metallurgy,” Prentice-Hall International, p. 117, 1993.
[74] 大矢根守哉, “新編塑性加工學,” 養賢堂, pp. 161-193, 2010.
[75] W. F. Hosford and R. M. Caddell, “Metal forming: mechanics and metallurgy,” Prentice-Hall International, p. 62, 1993.
[76] G. E. Dieter, “Mechanical metallurgy,” McGraw-Hill, pp. 548-553, 1976.
[77] G. E. Dieter, “Mechanical metallurgy,” McGraw-Hill, pp. 357-358, 1976.
[78] C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” Journal of Applied Physics, vol. 15, pp. 22-32, 1944.
[79] J. H. Hollomon, “The mechanical equation of state,” Transaction AIME, vol. 171, p. 355, 1947.
[80] C. F. Gerald and P. O. Wheatley, “Applied numerical analysis,” Addison Wesley, pp. 199-209, 2003.
[81] http://www.gleeble.com/, Dynamic Systems Incorporation.
[82] https://camm.osu.edu/facilities/processing/gleeble™/, Center for the Accelerated Maturation of Materials, The Ohio State University.
[83] L. F. Chaing, H. Hosokawa, J. Y. Wang, T. Uesugi, Y. Takigawa, and K. Higashi, “Investigation of dynamic friction properties of extruded AZ31 magnesium alloy by ring-typed compression testing,” Journal of the Japan Society for Technology of Plasticity, vol. 49, pp. 901-905, 2008.
[84] H. R. Rezaei Ashtiani, M. H. Parsa, and H. Bisadi, “Constitutive equations for elevated temperature flow behavior of commercial purity aluminum,” Materials Science and Engineering: A, vol. 545, pp. 61-67, 2012.
[85] Y. C. Lin, Y.-C. Xia, X.-M. Chen, and M.-S. Chen, “Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate,” Computational Materials Science, vol. 50, pp. 227-233, 2010.
[86] B. K. Chen, P. F. Thomson, and S. K. Choi, “Computer modelling of microstructure during hot flat rolling of aluminium,” Materials Science and Technology, vol. 8, pp. 72-77, 1992.
[87] I. V. Samarasekera, M. A. Wells, D. Jin, C. O. Hlady, J. K. Brimacombe, and E. B. Hawbolt, “Application of microstructural engineering to the processing of lightweight materials,” Materials Characterization, vol. 35, pp. 69-79, 1995.
[88] M. R. Rokni, A. Zarei-Hanzaki, A. A. Roostaei, and A. Abolhasani, “Constitutive base analysis of a 7075 aluminum alloy during hot compression testing,” Materials and Design, vol. 32, pp. 4955-4960, 2011.
[89] L. Luo, L.-R. Li, and W. Ding, “Overview on thermal-mechanical analog technology of Gleeble-1500D testing machine,” Heat Treatment Technology and Equipment, vol. 35, pp. 38-41, 2014.
[90] G. E. Dieter, “Mechanical metallurgy,” McGraw-Hill, pp. 522-526, 1976.
[91] H. Utsunomiya, “Annual reviews - Rolling,” Journal of the Japan Society for Technology of Plasticity, vol. 51, pp. 730-739, 2010.
[92] M. Avrami, “Kinetics of phase change. I General theory,” Journal of Chemical Physics, vol. 7, pp. 1103-1112, 1939.
[93] M. Avrami, “Kinetics of phase change. II Transformation‐time relations for random distribution of nuclei,” Journal of Chemical Physics, vol. 8, pp. 212-224, 1940.
[94] M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change. III,” Journal of Chemical Physics, vol. 9, pp. 177-184, 1941.
[95] E. S. Puchi, J. Beynon, and C. M. Sellars, “Simulation of hot rolling operations on commercial aluminum alloys,” in International Conference On Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Tokyo, Japan, 1988, pp. 572-579.
[96] C. M. Sellars , A. M. Irisarri, and E. S. Puchi, “Recrystallization characteristics of aluminum - 1%magnesium under hot working conditions,” in Microstructural Control in Aluminum Alloys: Deformation, Recovery, and Recrystallization, The Minerals, Metals & Materials Society, 1985, pp. 179-196.
[97] S. P. Timothy, H. L. Yiu, J. M. Fine, and R. A. Ricks, “Simulation of single pass of hot rolling deformation of aluminium alloy by plane strain compression,” Materials Science and Technology, vol. 7, pp. 255-263, 1991.
[98] C. Devadas, I. V. Samarasekera, and E. B. Hawbolt, “The thermal and metallurgical state of steel strip during hot rolling: Part I. Characterization of heat transfer,” Metallurgical transactions. A, Physical metallurgy and materials science, vol. 22 A, pp. 307-319, 1991.
[99] W. Chen, I. Samarasekera, and E. Hawbolt, “Fundamental phenomena governing heat transfer during rolling,” Metallurgical and Materials Transactions A, vol. 24, pp. 1307-1320, 1993.
[100] T. Sakai, Y. Saito, K. Hirano, and K. Kato, “Deformation and recrystallization behavior of low carbon steel in high speed hot rolling,” Transactions of the Iron and Steel Institute of Japan, vol. 28, pp. 1028-1035, 1988.
[101] A. V. Logunov and A. F. Zverov, “Investigating the thermal conductivity and electrical resistance of aluminum and a group of aluminum alloys,” Journal of Engineering Physics, vol. 15, pp. 1256-1260, 1972.
[102] R. J. Hand, S. R. Foster, and C. M. Sellars, “Temperature changes during hot plane strain compression testing,” Materials Science and Technology, vol. 16, pp. 442-450, 2000.
[103] M. S. Chun and J. G. Lenard, “Hot rolling of an aluminum alloy using oil/water emulsions,” Journal of Materials Processing Technology, vol. 72, pp. 283-292, 1997.
[104] S. Serajzadeh, A. Karimi Taheri, and F. Mucciardi, “Unsteady state work-roll temperature distribution during continuous hot slab rolling,” International Journal of Mechanical Sciences, vol. 44, pp. 2447-2462, 2002.
[105] S. P. Chen and S. Van Der Zwaag, “A comparative finite-element study of hot rolling and plane strain compression testing of aluminum AA1050,” Journal of Testing and Evaluation, vol. 32, pp. 290-297, 2004.
[106] T. Ishikawa, “A concise outline of mechanics of strip rolling for beginners,” Journal of the Japan Society for Technology of Plasticity, vol. 42, pp. 1061-1066, 2001.
[107] 張新明, “鋁熱連軋原理與技術,” 中南大學出版社, pp. 43-45, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code