Responsive image
博碩士論文 etd-0801114-152230 詳細資訊
Title page for etd-0801114-152230
論文名稱
Title
探針式銲接工具應用於摩擦攪拌銲接過程熱傳導與材料流動之理論研究
Theoretical Studies on Heat Transfer and Material Flow during the Friction Stir Welding Process using a Pin Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-09-01
關鍵字
Keywords
探針工具、塑性流動、摩擦攪拌銲接
plastic flow, pin tool, friction stir welding
統計
Statistics
本論文已被瀏覽 5664 次,被下載 710
The thesis/dissertation has been browsed 5664 times, has been downloaded 710 times.
中文摘要
本研究建立摩擦模型模擬探針式銲接工具於摩擦攪拌銲接過程中材料塑性流動與溫昇之行為,同時求解連續方程式、動量守恆方程式及能量守恆方程,並與使用其他理論模型及實驗之結果相互比較,以驗證理論模型之正確性。最後探討工具轉速、擠壓力及進給速度對工具與工件界面之溫昇及其塑性流動速度之影響。
使用熱電偶於摩擦攪拌對接過程中工件之溫度量測,數值結果與量測溫度互相對照後誤差甚小。由結果顯示工具前方之溫度小於工具後方之溫度,前進邊之溫度比後退邊溫度高出約40℃~50℃。由結果顯示,工具與工件界面間且靠近探針處的溫昇達到了最大值,使此區域中的黏度隨材料塑性變形速度變高而降低。在相同擠壓力、進給速度下,轉速越高,工件材料之溫昇及其塑性流動速度越大;而在相同轉速、進給速度下,擠壓力越大,工件材料之溫昇及其塑性流動速度也越大。工具進給速度加快時,整體銲道溫度隨之下降,而熱量往工具後方累積之現象較明顯。最後將所得之最大溫昇,以非線性最小平方差法,得到一最大溫昇之經驗式,以利設計者作為參考。
Abstract
In this study, a friction model is developed to investigate the behavior of material plastic flow and the temperature rise during the friction stir welding process using a pin tool, while solving the continuity, momentum and energy conservation equations. The results obtained by this model is verified by comparing with the theoretical results using another model and the experimental results. Finally, the influences of rotation speed, downward force, and feed rate on the interface temperature rise between the tool and the workpieces and the speed of plastic flow are investigated.
The interface temperatures between the butt workpieces were measured using the thermocouples during the friction stir welding process. Numerical results were in very good agreement with the measured temperatures. Numerical results showed that the temperature in front of the tool was lower than that behind the tool. The temperature at the advancing side is about 40℃~50℃ higher than that at the retreating side. The results showed that the temperature was achieved to the maximum at the interface between the tool and the workpieces close to the pin, so that the speed of plastic flow in this area is higher with lower viscosity. The temperature and speed of plastic flow increased with increasing rotation speed under a certain of downward force and feed rate; they increased with increasing downward force under a certain of rotation speed and feed speed. With increasing feeding rate, the interface temperature decreases, the accumulation of heat to the rear of the tool phenomenon became obvious. Empirical formulas for the maximum temperature rise in terms of tool rotation speed, downward force, and feed rate is derived by least square method.
目次 Table of Contents
目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖次 iv
表次 vii
第一章 緒論 1
1.1摩擦攪拌銲接概論 1
1.2文獻回顧 2
1.3研究目的 5
1.4論文架構 6
第二章 理論模型 7
2.1材料塑性流動模型 11
2.2熱傳模型 16
2.3摩擦模型 18
2.4邊界條件 21
2.5數值方法 24
第三章 結果與討論 31
3.1與現有理論結果比較 34
3.2與現有實驗結果比較 41
3.3與本實驗室之實驗結果比較 44
3.4銲接過程中之溫度與塑性流動速度分析 48
3.5不同工具轉速對材料溫度與塑性流動速度之影響 63
3.6不同工具擠壓力對材料溫度與塑性流動速度之影響 74
3.7不同工具進給速度對材料溫度與塑性流動速度之影響 85
3.8預測摩擦攪拌銲接過程中之工件溫昇 96
第四章 結論 99
4.1結論 99
4.2未來展望 100
參考文獻 101
參考文獻 References
參考文獻
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C. Dawes, Intl. Patent Application no PCT/GB92/02203 and GB Patent Application 1991. no. 9125978.9.
[2] J.E. Gould and Z. Feng, Heat flow model for friction stir welding of aluminum alloys. Journal of Materials Processing & Manufacturing Science, 1998. 7: p. 185-194.
[3] C.B. Smith, G.B. Bendzsak, T.H. North, J.F. Hinrichs, J.S. Noruk, and R.J. Heideman, Heat and material flow modeling of the friction stir welding process. Proceedings of the Ninth International Conference on Computer Technology in Welding, Detroit, Michigan, 2000: p. 475-486.
[4] Ø. Frigaard, Ø. Grong, and O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys. Metallurgical and Materials Transactions A, 2001. 32A: p. 1189-1200.
[5] M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Science and Technology of Welding & Joining, 2003. 8(3): p. 165-174.
[6] T.U. Seidel and A.P. Reynolds, Two-dimensional friction stir welding process model based on fluid mechanics. Sci Technol Weld Join, 2003. 8: p. 175-183.
[7] P.A. Colegrove and H.R. Shercliff, Development of Trivex friction stir welding tool. Part 1-Two-dimensional flow modelling and experimental validation. Sci Technol Weld Join, 2004. 9: p. 345-351.
[8] P.A. Colegrove and H.R. Shercliff, Development of Trivex friction stir welding tool. Part 2-Three-dimensional flow modelling. Sci Technol Weld Join, 2004. 9: p. 352-361.
[9] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modeling Simul. Mater. Sci. Eng., 2004. 12: p. 143-157.
[10] K. Colligan, Material flow behavior during friction stir welding of aluminum. Weld J Res Suppl, 1999. 78: p. 229s-237s.
[11] A.P. Reynolds, Visualisation of material flow in autogenous friction stir welds. Science and technology of welding & joining, 2000. 5(2): p. 120-124.
[12] H. Schmidt, T.L. Dickerson, and J. Hattel, Material flow in butt friction stir welds in AA2024-T3. Acta Mater 2006. 54: p. 1199-1209.
[13] M. Song and R. Kovacevic, Numerical and experimental study of the heat transfer process in friction stir welding. Proc. Instn Mech. Engrs Vol., 2003. 218 Part B: J. Engineering Manufacture: p. 73-85.
[14] M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools & Manufacture, 2003. 43: p. 605-615.
[15] M. Song and R. Kovacevic, Heat transfer modeling for both workpiece and tool in the friction stir welding process: a coupled model. Proc. Instn Mech. Engrs 2004. 218 Part B: J. Engineering Manufacture: p. 17-33.
[16] A. Askari, S. Silling, B. London, and M. Mahoney, Modeling and analysis of friction stir welding processes. in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, 2001: p. 43-54.
[17] P. Ulysse, Three-dimensional modeling of the friction stir-welding process. International Journal of Machine Tools and Manufacture, 2002. 42: p. 1549-1557.
[18] P.A. Colegrove and H.R. Shercliff, 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. Journal of Materials Processing Technology, 2005. 69: p. 320-327.
[19] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and thermal modelling of friction stir welding. Materials Processing Technology, 2006. 171: p. 348-357.
[20] J.H. Cho, D.E. Boyce, and P.R. Dawson, Modelling of strain hardening during friction stir welding of stainless steel. Modelling Simul. Mater. Sci. Eng., 2007. 15: p. 469-486.
[21] R. Nandan, G.G. Roy, and T. Debroy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding. Metallurgical and Materials Transactions A, 2006. 37A: p. 1247-1259.
[22] R. NANDAN, B. PRABU, A. DE, and T. DEBROY, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys. Welding Journal, 2007. 86: p. 313s-322s.
[23] R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Materialia, 2007. 55: p. 883-895.
[24] B.C. Liechty and B.W. Webb, Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools & Manufacture, 2008. 48: p. 1474-1485.
[25] G. Buffa, J. Huaa, R. Shivpuri, and L. Fratini, Design of the friction stir welding tool using the continuum based FEM model. Materials Science and Engineering A, 2006. 419: p. 381-388.
[26] H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding. Journal of Materials Engineering and Performance, 2009. 18: p. 339s-350s.
[27] H. Pashazadeh, J. Teimournezhad, and A. Masoumi, Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Materials and Design, 2014. 55: p. 619-632.
[28] 林高弘,摩擦攪拌銲接過程熱傳與材料流動之數值研究,國立中山大學,機電研究所,碩士論文. 2010.
[29] 鄭宇翔,摩擦攪拌熔接過程材料流動之理論與實驗研究,國立中山大學,機電研究所,碩士論文. 2011.
[30] 賴欣聰,數值模型應用於摩擦攪拌點銲過程溫度與材料流動之理論與實驗研究,國立中山大學,機電研究所,碩士論文. 2012.
[31] 力偉倫,摩擦模型應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實驗研究,國立中山大學,機電研究所,碩士論文. 2013.
[32] T.J. LIENERT, W.L. STELLWAG, JR., B.B. GRIMMETT, and R.W. WARKE, Friction Stir Welding Studies on Mild Steel. WELDING JOURNAL, 2003. 82(1): p. 1s-9s.
[33] R.T. Lee, C.T. Liu, and Y.C. Chiou, Experimental investigations on the feeding force and its formation mechanism during friction stir welding of aluminum alloy using a novel dynamometer. Journal of Chinese Society of Mechanical Engineering, 2011. 33: p. 11-19.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code