Responsive image
博碩士論文 etd-0801114-163625 詳細資訊
Title page for etd-0801114-163625
論文名稱
Title
Cu2ZnSnS4薄膜之硫化製程研究
Preparation of Cu2ZnSnS4thin films by sulfurization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-09-01
關鍵字
Keywords
薄膜太陽電池、Cu2ZnSnS4、前驅物、硫化、快速加熱製程
rapid thermal processing, sulfurization, Cu2ZnSnS4, precursor, thin film solar cell
統計
Statistics
本論文已被瀏覽 5674 次,被下載 81
The thesis/dissertation has been browsed 5674 times, has been downloaded 81 times.
中文摘要
本研究以單元素為前驅層鍍製於鈉玻璃(soda-lime glass SLG)基板上,疊層順序為SLG/Zn/Sn/Cu,再以硫化製程形成Cu2ZnSnS4(簡稱CZTS)之四元化合物做為薄膜太陽電池之主要光吸收層。本實驗室硫化製程分為慢速與快速硫化製程主要以升溫速率來區分,其中慢速硫化是以每分鐘30℃的升溫速率至目標溫度570℃持溫30分鐘,再以每分鐘30℃降溫速率降至300℃時停止供應硫蒸氣,於200℃時取出試片。快速硫化(RTA)是以每秒5~25℃的升溫速率至目標溫度570℃持溫1分鐘,再以自然冷卻的方式降到室溫。實驗結果顯示慢速硫化製程可製備CZTS薄膜,且其趨近單一相範圍為Zn/Sn = 1.2及0.6≦(Cu/(Zn+Sn))≦0.9之間,電阻率隨Cu/Zn+Sn比例下降而上升其範圍在0.2~800Ω-cm、能隙值約為1.5eV且光吸收係數為104~105cm-1及元件效率大約0.1%。在快速硫化製程中,將以不同升溫速率探討Mo與CZTS的附著性的問題其中以每秒5℃的升溫速率結果最好且組成比例為Zn/Sn = 1.2及Cu/(Zn+Sn) =0.75,電阻率約3000Ω-cm及能隙值約為1.48eV。將Sb摻雜在Cu與Zn疊層中間並摻雜不同的比例,探討其對CZTS薄膜的晶體結構與表面形貌的改善程度。當Sb摻雜在以疊層順序為SLG/Mo/Zn/Sb/Sn/Cu時且厚度約為100nm時可以有效的改善薄膜的表面形貌及晶體結構,但此製程的再現性不佳且鍍製在SLG基板上無法製備出CZTS薄膜,故無法量測其、光電性。以CuSe二元硒化物當作快速硫化製程的前驅物,雖然可以形成CZTS薄膜,但其CuSe在快速升溫的過程中形成液相再與硫產生反應中有相變化產生導致體積變化過大最後使得薄膜剝落。
Abstract
In this study, a sulfurization process was employed to synthesize Cu2ZnSnS4 (CZTS)
thin films. The process was conducted by the deposition of elemental precursor layers
with the stacking sequence of Zn/Sn/Cu by sputtering on soda glass (soda-lime glass SLG) substrate and followed by thermal annealing in an inert ambient to form the
CZTS film. Both conventional and repaid thermal sulfurization with heating rate of 30℃/min and 5-25℃/sec had been used, respectively, to raise the temperature to 570℃.The duration for annealing was 30 minutes for conventional sulfurization and 1 minute for rapid thermal sulfurization. The samples were then cooled to room temperature with a supply of sulfur vapor until the temperature reached 300℃.Our experimental results on conventional sulfurization showed that single phase of CZTS could be prepared with the preset composition using the Zn/Sn ratio fixed at 1.2 and the Cu/(Zn+Sn) ratio kept between 0.6 and 0.9. The film resistivity was related to chemical composition and could be controlled between 0.2 and 800 Ω-cm. Optical bandgap of the films was measured to be about 1.5eV and optical absorptioncoefficients were determined to be 104~105cm-1.The film adhesion problem occurred for the films prepared by rapid thermal sulfurization and could be improved by using a heating rate below 5℃/sec. Single-phase CZTS films could be prepared with the preset composition of Zn/Sn = 1.2 and Cu/(Zn + Sn) = 0.75. Its resistivity was measured to be 3000Ω-cm. Optical transmission measurement of this film showed that the bandgap and optical absorption coefficients were 1.48 eV and 104~105cm-1, respectively.In order to improve grain structures and surface morphology of the films, a thin layer of Sb was added between Sn and Zn in the precursor for sulfurization. An Sb layer thickness of 100 nm was suitable for the above mentioned purposes but the reproducibility of this process was still a problem.To promote the formation of liquid phase during the sulfurization processes, Cu had been replaced with CuxSe as part of precursors. The result was not promising because CuxSe might be turned into CuxS and caused the film peeled off.
目次 Table of Contents
目錄
論文審定書…………………………………...……………………..…………………i
致謝……………………………………………………………..……..………………ii
中文摘要…………………………………………………..………….………………iii
Abstract………………………………………………………..…………….………iv
目錄………………………………………………………..………………….………vi
圖目錄………………………………….………………………..………….…….…viii
表目錄……………………………………..……………………..………...…………xi
第一章、 文獻回顧………..…………………………………………………………1
1.1 前言…………………………………………….....…………………………1
1.2 太陽能電池原理………………………………….…………………………2
1.3 Cu2ZnSnS4(CZTS)薄膜特性……………..…………………………………6
1.4 CZTS薄膜製程………………………….…………………………………13
1.5 硫化反應機制…………………………………..……………………….…15
1.6 CZTS太陽電池元件製程簡介……………………………………………17
1.7 研究動機與目的………………………………………………………...…19
第二章、 實驗製程與分析儀器介紹………………………………………………20
2.1 基板準備的前置作業…………………..……………….…….……………20
2.2 CZTS薄膜製備……………………………………….……………………21
2.3 分析方法與儀器介紹………………………………………………………26
第三章、 實驗結果與討論………………………………………………..…..……30
3.1 慢速升溫硫化製程……………………………………………...…..………30
3.1.1 CZTS組成調變………………………………………...…..………34
3.1.2 元件製作……………………………………………………………38
3.2 快速升溫硫化製程…………………………………………….....…………40
3.2.1 升溫速率對Mo與CZTS薄膜的影響…………………….…...…40
3.2.2 快速硫化CZTS元件製作………………………………………....45
3.2.3 摻雜Sb對CZTS薄膜表面之影響……………………………..…48
第四章、 結論…………………………………………………………..……..……56
第五章、 參考文獻…………………………………………………………..…..…58
參考文獻 References
1. Philip Jackson, Dimitrios Hariskos, Roland Wuerz, Wiltraud Wischmann, Michael Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%, physica status solidi (RRL) - Rapid Research Letters, Volume 8, Issue 3, pages 219–222,March 2014
2. http://www.solar-international.net/article/77655-TSMC-Solar-announce-new-CIGS-record.php
3. HongxiaWang, Progress in Thin Film Solar Cells Based on Cu2ZnSnS4, Volume 2011, Article ID 801292, 10 pages
4. QijieGuo, Hugh W. Hillhouse, and Rakesh Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells,J. AM. CHEM. SOC. 2009, 131, 11672–11673
5. Photovoltaic Education Network, 4. Solar Cell Operation - Solar Cell Structure”http://pvcdrom.pveducation.org/CELLOPER/IDEALCEL.HTM
6. Part II – Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code Publish Date: May 10, 2012 | 114 Ratings | 4.35 out of 5
7. S.Chen﹐X.G.Gong﹐A.Walsh﹐S.H.Wei﹐Crystal and electronic band structure of Cu2ZnSnX4 (X=Sand Se) photovoltaic absorbers: First-principles insights﹐Appl. Phys. Lett. 94, 041903 (2009)
8. V.Keraj﹐K.K.Patel﹐S.J.Patel﹐D.V.Shah﹐Synthesis and characterisation of Copper Zinc Tin Sulphide(CZTS)compound for absorber material in solar-cells﹐Journal of Crystal Growth 362(2013)174-177
9. Delbos, S., 2012. Kesterite thin films for photovoltaics: a review. EPJ
Photovolt. 3, 35004.
10. Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey and SupratikGuha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovolt: Res. Appl. 2013; 21:72–761
11. Shiyou Chen, Ji-Hui Yang X. G. Gong, Aron Walsh,3and Su-Huai Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, PHYSICAL REVIEW B 81, 245204 _2010_
12. Nirav Vora, Jeffrey Blackburn, Ingrid Repins, Carolyn Beall, Bobby To, Joel Pankow, Glenn Teeter, Matthew Young, and Rommel Noufi, Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se, J. Vac. Sci. Technol. A, Vol. 30, No. 5, Sep/Oct 2012
13. Amin Emrani , Parag Vasekar, Charles R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances, Solar Energy 98 (2013) 335–340
14. R.B.V. Chalapathy, Gwang Sun Jung, Byung Tae Ahn, Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells, Solar Energy Materials & Solar Cells 95 (2011) 3216–3221
15. K.K. Patel, D.V. Shah, Vipul Kheraj, Effects of Annealing on Structural Properties of Copper Zinc Tin Sulphide (CZTS) Material, J. NANO- ELECTRON. PHYS. 5, 02031 (2013)
16. Zhenghua Su, Kaiwen Sun, Zili Han, Fangyang Liu, Yanqing Lai, Jie Li and Yexiang Liu, Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method, J. Mater. Chem., 2012, 22, 16346
17. Louise S. Price, Ivan P. Parkin, Amanda M. E. Hardy, and Robin J. H. Clark, Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass, Chem. Mater. 1999, 11, 1792-1799
18. J. Nanda, Sameer Sapra, and D. D. Sarma, Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies, Chem. Mater. 2000, 12, 1018-1024.
19. Hyesun Yoo, JunHo Kim, Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films 518 (2010) 6567–6572
20. Tsuyoshi Maeda, Satoshi Nakamura, and Takahiro Wada, First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4, Jpn. J. Appl. Phys. 50 (2011) 04DP07
21. I. D. Olekseyuk, I. V. Dudchak, L. V. Piskach, Journal of Alloys and Compound,
368(1-2), 135 (2004).
22. T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, T. Yamaguchi, Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation, Thin Solid Films 518(2010)S29-S33
23. Schurr R et al (2009) Thecrystallisation of Cu2ZnSnS4 thin film solar cell absorbers from coelectroplatedCu–Zn–Sn precursors. Thin Solid Films 517(7):2465–2468
24. Araki H et al (2009) Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplatedprecursors. Sol Energy Mater Sol Cells 93(6–7):996–999
25. Weber A et al (2009) In situ XRD on formation reactions of Cu2ZnSnS4 thin films. PhysicaStatus Solidi (c) 6(5):1245–1248
26. J. H. Scofield et al,Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films 260 (1995) 26-31
27. 李貞儀, Cu2ZnSnSe4薄膜之硒化製程研究,國立中山大學材料科學研究所碩士論文,民國一百一年。
28. 高千惠, Cu2ZnSnSe4薄膜之快速硒化製程研究,國立中山大學材料科學研究所碩士論文,民國一百一年。
29. K. Bukat, Z. Moser, J. Sitek, W. Ga˛sior, M. Kos´cielski and J. Pstrus, Investigation of Sn-Zn-Bi solders – Part I: surface tension, interfacial tension and density measurements of SnZn7Bi solders, Volume 22 • Number 3 • 2010 • 10–16
30. Juskenas R et al (2007) Electrochemical and XRD studies of Cu–Zn coatings
electrodeposited in solution with D-mannitol. J ElectroanalChem 602(2):237–244
31. Copper Development Association (CDA) (1963) Equilibrium diagrams of copper alloys, 3rdedn. London
32. Tu KN (1996) Cu/Sn interfacial reactions: thin-film case versus bulk case. Mater ChemPhys46(2–3):217–223
33. SureshBabuG.,KishoreKumarY.B.,UdayBhaskarP.,SundaraRajaVanjari, Effect ofCu/(Zn+Sn)ratioonthepropertiesofco-evaporatedCu2ZnSnSe4 thin films, Solar Energy Materials & Solar Cells 94 (2010) 221–226
34. A.I. Inamdar , Seulgi Lee , Ki-Young Jeon , Chong Ha Lee , S.M. Pawar ,R.S. Kalubarme , Chan Jin Park , Hyunsik Im ,, Woong Jung , Hyungsang Kim, Optimized fabrication of sputter deposited Cu2ZnSnS4 (CZTS) thin films, Solar Energy 91 (2013) 196–203
35. 何昱暘,CuInSe2薄膜快速硒化製程之改良研究,國立中山大學材料科學研究所碩士論文,民國九十九年。
36. 劉俊平,二硒化銅銦薄膜硫化轉換製程之研究,國立中山大學材料科學研究所博士論文(2006)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code