Responsive image
博碩士論文 etd-0801115-153039 詳細資訊
Title page for etd-0801115-153039
論文名稱
Title
西北太平洋過去九萬年中層水循環演變
The Last 90 Ka Intermediate Water Circulation Evolution of Northwestern Pacific
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-26
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
中層水、MD01-2411、西北太平洋、底棲有孔蟲、鎂鈣比值
MD01-2411, Northwestern Pacific, Mg/Ca ratio, intermediate water, benthic foraminifera
統計
Statistics
本論文已被瀏覽 5789 次,被下載 487
The thesis/dissertation has been browsed 5789 times, has been downloaded 487 times.
中文摘要
現今於西北太平洋地區形成的中層水循環在全球的熱傳輸系統中扮演了關鍵的角色,因此了解西北太平洋地區中層水的長期水文演變,對於重建過去氣候系統變化益發重要。本研究利用取自日本親潮流域的岩心MD01-2411,分析底棲有孔蟲Uvigerina spp.之穩定同位素及鎂鈣比值,重建當地中層水深度的長期水文變化紀錄。由建立的年代模式資料顯示,推估該岩心所涵蓋的年代範圍可至94,000年前左右,而沉積速率也顯示當地的沉積環境相對穩定,但在沉積物中可發現不少的漂冰碎屑(Ice-Rafted Debris, IRD)存在。由MD01-2411所重建的紀錄,可以反映西北太平洋地區中層水循環的長期變化。由紀錄中,我們發現在最近一次冰盛期(Last Glacial Maximum, LGM)時,中層水深度的海水溫度及鹽度有增加的現象發生,同樣的情況在55ka與10ka時也有發現,據推測此時西北太平洋表層海水鹽度偏高,可能是由於海冰覆蓋面積增加導致滷水析出所致,當此時,海表鹽度的增加有助於推動深層海水對流並增強太平洋經向反轉流(Pacific Meridional Overturning Circulation, PMOC)的循環,由低緯度往北輸送的高溫高鹽的表層海水因而沉降到中層水深度,使得中層水溫度增加。而此種現象與冰期中的千年時間尺度事件不同,我們發現當Heinrich事件發生時,中層水的溫度通常有1~3度的下降,此時,其鹽度也呈現減少的趨勢。而此中層水溫度及鹽度的下降趨勢,指示此時北太平洋高緯度地區的表層水沉降變好,間接顯示在Heinrich事件時,西北太平洋的中層水循環呈現較現今為佳的狀態。
Abstract
Nowadays there is no deep water but only intermediate water formed in northwestern Pacific. On account of the intermediate water circulation in North Pacific plays an active role in buffering the global ocean heat transportation. Thus, the understanding of hydrological development of intermediate water is important. In this study, piston core MD01-2411 recovered from the Oyashio region was used to construct the past intermediate depth hydrology through stable isotope (δ18O, δ13C) and Mg/Ca ratio analyses based on benthic foraminiferal Uvigerina spp. Estimated age model suggests the core approximately reaching back to 94,000 years, and the sedimentation rate reveals a relatively steady deposition environment. The long-term changes of Oyashio intermediate water reflect the intense of intermediate water circulation in northwestern Pacific. The positive temperatures and salinity anomalies suggest the saltier and warmer water penetrated down to intermediate water depth while the North Pacific surface water becomes saltier and leads to a stronger Pacific meridional overturning circulation (PMOC) and deeper formation of intermediate water. Within glacial time, the occurrence of Heinrich events associated with decreased intermediate water temperatures. The cold and fresh subsurface water indicates the surface water sinking deeper at high latitudes in the North Pacific and suggests the better ventilation occurred during Heinrich events.
目次 Table of Contents
Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
Contents vi
Figures viii
Tables ix
1. Introduction 1
1.1 General background information 1
1.2 Regional hydrological background 2
1.3 Literature review 5
1.4 Benthic foraminifera Uvigerina spp. 7
1.5 Research objective 9
2. Material and methods 10
2.1 Material 10
2.2 Age model 12
2.3 Stable isotopes 13
2.3.1 The principle of stable isotopes analysis 13
2.3.2 Stable isotope analysis 15
2.3.3 Stable isotope analysis pretreatment 16
2.4 Mg/Ca element ratio 17
2.4.1 The principle of Mg/Ca ratio 17
2.4.2 Mg/Ca element ratio analysis 18
2.4.3 Mg/Ca element ratio analysis pretreatment 19
3. Results 21
3.1 Chronology and sedimentology 21
3.1.1 Age model 21
3.1.2 The sedimentation rate 24
3.2 Stable isotope records 27
3.2.1 Stable oxygen isotope 29
3.2.2 Stable carbon isotope 30
3.3 Mg/Ca ratio 32
3.4 Oxygen isotope values of seawater 35
4. Discussions 38
4.1 The hydrology of northwestern Pacific intermediate depth water 38
4.1.1 Hydrological properties 38
4.1.2 The intermediate depth δ18O 42
4.2 Intermediate Water Ventilation during last glacial period 44
4.2.1 The LGM high temperature phenomenon 44
4.2.2 The Heinrich events 47
5. Conclusions 50
References 52
參考文獻 References
References
Adkins, J. F., McIntyre, K., and Schrag, D. P. (2002). The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298(5599), 1769-1773.
Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova, G., and Thiede, J. (2002). Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions. Marine Micropaleontology, 45(2), 83-99.
Billups, K., and Schrag, D. P. (2002). Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography, 17(1), 1003, 10.1029/2000PA000567.
Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D. O'Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng. (2013). World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., http://doi.org/10.7289/V5NZ85MT.
Bryan, S. P., and Marchitto, T. M. (2008). Mg/Ca–temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography, 23(2).
Chikamoto, M. O., Menviel, L., Abe-Ouchi, A., Ohgaito, R., Timmermann, A., Okazaki, Y., Harda, N., Oka, A., and Mouchet, A. (2012). Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models. Deep Sea Research Part II: Topical Studies in Oceanography, 61, 114-126. Corliss, B. H. (1991). Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology, 17(3), 195-236.

de Garidel-Thoron, T., Beaufort, L., Bassinot, F., and Henry, P. (2004). Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9187-9192.
Emiliani, C. (1955). Pleistocene temperatures. The Journal of Geology, 63(6), 538-578.
Eggins, S. M., Sadekov, A., and De Deckker, P. (2004). Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? Earth and Planetary Science Letters, 225(3), 411-419.
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., Crowhurst, S., Booth, L., and Daunt, C. (2010). A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews, 29(1), 160-169.
Ezer, T., and Oey, L. Y. (2010). The role of the Alaskan Stream in modulating the Bering Sea climate. Journal of Geophysical Research: Oceans, 115(C4). doi:10.1029/2009JC005830.
Fairbanks, R. G. (1989). A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), 637-642.
Goericke, R., and Fry, B. (1994). Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles, 8(1), 85-90.
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A., Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G., Labeyrie, L., Lea, D. W., Marchitto, T., Martínez-Botí, M. A., Mortyn, P. G., Ni, Y., Nuernberg, D., Paradis, G., Pena, L., Quinn, T., Rosenthal, Y., Russell, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., and Wilson, P. A. (2008). Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry Geophysics Geosystem, 9, doi:10.1029/2008GC001974.
Hasunuma, K. (1978). Formation of the intermediate salinity minimum in the northwestern Pacific Ocean. Bulletin of the Ocean Research, Institute-University of Tokyo (Japan). Tokyo, 47 pp.
Hu, A., Meehl, G. A., Han, W., Abe‐Ouchi, A., Morrill, C., Okazaki, Y., and Chikamoto, M. O. (2012). The Pacific‐Atlantic seesaw and the Bering Strait. Geophysical Research Letters, 39(3). doi:10.1029/2011GL050567.
Hunt, G. L., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A., Mueter, F., Napp, J.M., Overland, J. E., Ressler, P. H., Salo, S., and Stabeno, P. J. (2011). Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science: Journal du Conseil, fsr036.
Kawai, H. (1972). Hydrography of the Kuroshio extension. H. Stommel, K. Yoshida (Eds.), Kuroshio: its physical aspects, University of Tokyo Press, pp. 235-352
Keigwin, L. D. (1998). Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography, 13(4), 323-339.
Kuwae, M., Hayami, Y., Oda, H., Yamashita, A., Amano, A., Kaneda, A., Ikehara, M., Inouchi, Y., Omori, K., Takeoka, H., and Kawahata, H. (2009). Using foraminiferal Mg/Ca ratios to detect an ocean-warming trend in the twentieth century from coastal shelf sediments in the Bungo Channel, southwest Japan. The Holocene, 19(2), 285-294.
Kuzmin, Y. V., Burr, G. S., and Jull, A. T. (2001). Radiocarbon reservoir correction ages in the Peter the Great Gulf, Sea of Japan, and eastern coast of the Kunashir, southern Kuriles (northwestern Pacific). Radiocarbon, 43(2), 477-482.
Kuzmin, Y. V., Burr, G. S., Gorbunov, S. V., Rakov, V. A., and Razjigaeva, N. G. (2007). A tale of two seas: Reservoir age correction values (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 460-462.
Lea, D. W., Pak, D. K., and Spero, H. J. (2000). Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289(5485), 1719-1724.
Lear, C. H., Rosenthal, Y., and Slowey, N. (2002). Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration. Geochimica et Cosmochimica Acta, 66(19), 3375-3387.
Lear, C. H., Elderfield, H., and Wilson, P. A. (2003). A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth and Planetary Science Letters, 208(1), 69-84.
Loeblich Jr, A. R., and Tappan, E. (1988). Foraminiferal genera and their classification. Van Nostrand Reinhold Company. New York, 970 pp.
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G. (1995). The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochemical Cycles, 9(4), 653-665.
Itaki, T., Uchida, M., Kim, S., Shin, H. S., Tada, R., and Khim, B. K. (2009). Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. Journal of Quaternary Science, 24(8), 856-865.
Martin, P. A., Lea, D. W., Rosenthal, Y., Shackleton, N. J., Sarnthein, M., and Papenfuss, T. (2002). Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth and Planetary Science Letters, 198(1), 193-209.

Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C., and Shackleton, N. J. (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary research, 27(1), 1-29.
Matsumoto, K., Oba, T., Lynch-Stieglitz, J., and Yamamoto, H. (2002). Interior hydrography and circulation of the glacial Pacific Ocean. Quaternary Science Reviews, 21(14), 1693-1704.
Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, M. O., Mouchet, A., and Asahi, H. (2010). Deepwater formation in the North Pacific during the last glacial termination. Science, 329(5988), 200-204.
Pahnke, K., Goldstein, S. L., and Hemming, S. R. (2008). Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years. Nature Geoscience, 1(12), 870-874.
Pekar, S. F., and Kominz, M. A. (2001). Two-dimensional paleoslope modeling: a new method for estimating water depths of benthic foraminiferal biofacies and paleoshelf margins. Journal of Sedimentary Research, 71(4), 608-620.
Pickard, G. L., and Emery, W. J. (1982). Descriptive physical Oceanography, Pcrgamon, Tanytown. New York, 249 pp.
Rosenthal, Y., Oppo, D. W., and Linsley, B. K. (2003). The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophysical Research Letters, 30, 1428, doi:1410.1029/2002GL016612.
Sakamoto, T., M. Ikehara, M. Uchida, K. Aoki, Y. Shibata, T. Kanamatsu, N. Harada, K. Iijima, K. Katsuki, H. Asahi, K. Takahashi, H. Sakai, and H. Kawahata. (2006). Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: Age model and ice-rafted debris in IMAGES Core MD01-2412. Global and Planetary Change, 53(1), 58-77.

Sarnthein, M., Winn, K., Jung, S. J., Duplessy, J. C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G. (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9(2), 209-267.
Schlung, S. A., Christina Ravelo, A., Aiello, I. W., Andreasen, D. H., Cook, M. S., Drake, M., Dyez, K. A., Guilderson, T. P., Lariviere, J. P., Stroynowski, Z., and Takahashi, K. (2013). Millennial‐scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high‐resolution record from IODP Site U1340. Paleoceanography, 28(1), 54-67.
Schidlowski, M., Hayes, J. M., and Kaplan, I. R. (1983). Isotopic inferences of ancient biochemistries- Carbon, sulfur, hydrogen, and nitrogen. Earth's earliest biosphere: Its origin and evolution. Princeton, NJ, Princeton University Press, 149-186.
Schönfeld, J., and Altenbach, A. V. (2005). Late Glacial to Recent distribution pattern of deep-water Uvigerina species in the north-eastern Atlantic. Marine Micropaleontology, 57(1), 1-24.
Shackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary research, 3(1), 39-55.
Shcherbina, A. Y., Talley, L. D., and Rudnick, D. L. (2003). Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea. Science, 302(5652), 1952-1955.
Sosdian, S., and Rosenthal, Y. (2009). Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science, 325(5938), 306-310.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(6659), 497-500.
Spero, H. J., and Lea, D. W. (2002). The cause of carbon isotope minimum events on glacial terminations. Science, 296(5567), 522-525.
Stabeno, P. J., Schumacher, J. D., and Ohtani, K. (1999). The physical oceanography of the Bering Sea. Dynamics of the Bering Sea, 1-28.
Talley, L. D. (1991). An Okhotsk Seawater anomaly: implications for ventilation in the North Pacific. Deep Sea Research, 38, S171-S190.
Talley, L. D., and Roemmich, D. (1991). A tribute to Reid, Joseph, l. in recognition of 40 years of contributions to oceanography. Deep Sea Research, 38, R7-R11.
Talley, L. D. (1993). Distribution and formation of North Pacific intermediate water. Journal of Physical Oceanography, 23(3), 517-537.
Talley, L. D., Nagata, Y., Fujimura, M., Iwao, T., Kono, T., Inagake, D., Hirai, M., and Okuda, K. (1995). North Pacific intermediate water in the Kuroshio/Oyashio mixed water region. Journal of Physical Oceanography, 25(4), 475-501.
Talley, L. D. (1997). North Pacific Intermediate Water transports in the mixed water region. Journal of physical oceanography, 27(8), 1795-1803.
Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562-581.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E. and Labracherie M. (2002). Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1), 295-305.
WU, X. M. (2003). Stable Oxygen Isotope and Sea Surface Temperature Variations in the Northwestern Pacific since the Last Glacial Maximum (IMAGES MD012-404, -410, -411, -419). Unpublished master’s thesis, National Taiwan Ocean University, 54 pp.
Yamane,M., and Oba, T. (1999). Paleoceanographic change of the Sanriku Area during the last 90,000 years based on the analysis of a sediment core (KH94-3, LM-8). Quaternary research, 38, 1-16. (in Japanese with English abstract)
Yasuda, I. (1997). The origin of the North Pacific intermediate water. Journal of Geophysical Research: Oceans, 102(C1), 893-909.
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L. K. (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 406(6797), 713-716.
Yokoyama, Y., Esat, T. M., and Lambeck, K. (2001). Last glacial sea-level change deduced from uplifted coral terraces of Huon Peninsula, Papua New Guinea. Quaternary International, 83, 275-283.
Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, A., and Kawahata, H. (2007). Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 432-437.
Yu, J., and Elderfield, H. (2008). Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth and Planetary Science Letters, 276(1), 129-139.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code