Responsive image
博碩士論文 etd-0801116-081520 詳細資訊
Title page for etd-0801116-081520
論文名稱
Title
使用旋轉壓縮成形製作具有梯度微結構與硬度之鎂合 金材料
Manufacture of Gradient Microstructure and Hardness Magnesium Alloy Materials by Rotating Compression Forming
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-30
繳交日期
Date of Submission
2016-09-01
關鍵字
Keywords
梯度鎂合金材料、硬度、有限元素分析、旋轉壓縮、微結構
hardness, microstructure, rotating compress, finite element method, gradient magnesium alloy material
統計
Statistics
本論文已被瀏覽 5672 次,被下載 12
The thesis/dissertation has been browsed 5672 times, has been downloaded 12 times.
中文摘要
本研究以實驗手法探討使用旋轉壓縮成形獲得具有微結構與硬度梯度之材料,使用材料為鎂合AZ31 之圓柱試件,其一端受拘束,而另一端受旋轉壓縮作用。藉由改變成形壓力(55、60、62、65 MPa)、上模具轉速(10、20、30 rpm)、旋轉圈數(10、20、30、40)及成形溫度(280°C、320°C、360°C),試件將獲得不同硬度、晶粒尺寸的梯度性質。本研究獲得各成形參數與硬度、晶粒尺寸梯度性質間之關係。隨旋轉圈數增加,可以獲得較大的硬度值。相對最大晶粒尺寸梯度發生在實驗參數壓力60 MPa、轉速10 rpm、旋轉圈數30 圈。其晶粒尺寸梯度在半徑r = 8 mm 時為2.1 μm/mm,在接觸面h = 0 mm 與試件內部h = 10 mm 之晶粒尺寸分別為4.1 及25.4 μm,此時相同位置硬度分別為72.9 及59.8 HV,即較大硬度對應較小晶粒尺寸。另外,進行旋轉壓縮成形之有限元素分析,由等效應變分佈與晶粒尺寸分佈之比較可知,較大等效應變對應較小晶粒尺寸。試件在定壓力60 MPa 隨成形溫度由280°C 上升至360°C 時,其最大外徑由20 mm 增加至 29.17 mm,表示試件隨成形溫度增加有較大直徑變形。
Abstract
This study aims to obtain experimentally gradient microstructure and hardness materials by rotating compression forming. Specimens of Magnesium alloy AZ31 with column shape are used. One end of the specimen is fixed and the other end is compressed and rotated. Different gradient microstructure and hardness distributions are obtained by changing the compression pressures (55, 60, 62,65 MPa), rotation speeds (10, 20, 30 rpm), rotation numbers (10, 20, 30, 40 revolutions) and forming temperatures (280°C, 320°C, 360°C). The relationships between the forming parameters and the gradient microstructure and hardness distributions are discussed. Larger grain size gradients were obtained with compression pressure of 60 MPa, rotating speed of 10 rpm and rotation number of 30 revolutions. The gradient of grain size is 2.1 μm/mm at r = 8 mm. The grain size at h = 0 mm and h = 10 mm on the longitudinal cross section are 4.1 μm and 25.4 μm, respectively, and the hardnesses are 72.9 and 59.8 HV, respectively. That is a higher hardness corresponds to a smaller grain size. In addition, finite element analyses of rotating compression forming are conducted. The effective strain is maximum at the middle of the contact surface of the specimen. From the comparisons of effective strain distribution and grain size distribution, it is known that a larger effective strain corresponds to a smaller grain size. The specimen maximum diameter after rotating compression increased from 20 mm to 29.17 mm at forming temperature from 280°C to 360°C under compression pressure of 60 MPa. That is the diameter extension of the specimen increases with the forming temperature.
目次 Table of Contents
論文審定書 i
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 鎂合金特性及微觀組織 2
1.2.1 鎂合金之特性與製備 2
1.2.2 鎂合金之微觀組織與變形機制 3
1.3 功能梯度材料之介紹 6
1.3.1 功能梯度材料簡介與製備 6
1.3.2 功能梯度材料之應用 8
1.4 旋轉壓縮成形簡介 9
1.4.1 旋轉壓縮成形 9
1.4.2 製程參數 10
1.5 文獻回顧 11
1.5.1 大塑性變形之成形方法 11
1.5.2 旋轉壓縮成形之研究方法 11
1.5.3 壓縮扭轉加工(CPT)之成形參數與應用 11
1.5.4 高壓扭轉成形(HPT)之相關研究 12
1.6 研究動機與論文架構 12
1.6.1 研究動機 12
1.6.2 論文架構 12
第二章 旋轉壓縮實驗 14
2.1 鎂合金旋轉壓縮實驗 14
2.1.1 鎂合金之成份與備製 14
2.1.2 旋轉壓縮機台介紹 14
2.2 旋轉壓縮實驗簡介 16
2.2.1 實驗試件 16
2.2.2 旋轉壓縮實驗參數之設定 16
2.2.3 實驗流程 17
2.3 實驗成品外觀 18
2.4 金相觀察備製與結果 20
2.4.1 金相觀察備製 20
2.4.2 接觸面之金相觀察結果 22
2.4.3 垂直面之金相觀察結果 35
2.5 硬度試驗備製與結果 45
2.5.1 硬度試驗備製 45
2.5.2 接觸面之硬度試驗結果 47
2.5.3 垂直面之硬度試驗結果 54
第三章 旋轉壓縮之有限元素分析 58
3.1 旋轉壓縮試驗之參數與模型 58
3.1.1 有限元素分析軟體DEFORM 簡介 58
3.1.2 旋轉壓縮成形之模型 58
3.1.3 DEFORM 建模與模擬參數 60
3.2 恆溫模擬結果 62
3.2.1 模擬與實驗成品外觀分析 62
3.2.2 試件接觸面之等效應變分佈 63
3.2.3 試件垂直面之等效應變分佈 66
3.3 恆溫模擬結果與實驗結果比較 68
3.4 考慮熱傳效應之模擬 75
3.4.1 熱傳效應之模擬設定 75
3.4.2 熱傳效應之模擬結果 75
第四章 結論 78
4.1 結論 78
4.2 未來展望與建議 79
參考文獻 80
參考文獻 References
[1] T. Inoue, “Advanced researches on ultrafine-grained metals by plastic deformation,” Journal of the JSTP, Vol. 55, No. 647, 2014.
[2] 葉哲政, “鎂合金在車輛產業之應用專題研究,” 金屬中心產業報告, pp. 11-13, 2003.
[3] 經濟部工業局, “輕金屬產業發展計畫,” 經濟部工業局101 年度專案計畫期末執行成果報告, pp. 2-5, 2012.
[4] A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer, and D. H. S. John, “Development of the as-cast microstructure in magnesium-aluminum alloys", Journal of Light Metals, 2001, pp. 61-72, 2001.
[5] 陳昱, “壁厚具硬度梯度之管材擠製模具設計,” 碩士論文, 國立中山大學機械與機電工程學系, 高雄, 台灣, 2014.
[6] S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, “Dynamic recrystallization in AZ31 magnesium alloy,” Materials Science and Engineering:A, Vol.456, pp. 52-57, 2007.
[7] 平井敏夫, “はじめに-傾斜機能材料とは,” 21 世紀の新素材-産業界を活性化させる傾斜機能材料, pp. 8-15, 鍬谷書店, 東京, 2000.
[8] 李言榮, 惲正中, “材料物理學概論(Materials Physics Introduction),” 五南出版社, pp. 114-116,台灣, 2003.
[9] 中野光一, “傾斜機能材料を使った商品化への取り組み,” 高田技報, Vol.18, pp. 22-23, 北九州市, 2008.
[10] R. Morimoto, Y. Kume, M. Kobashi, N. Kanetake, “Effect of rotation times on consolidation process of machined chip wastes by compressive torsion processing,” The proceedings of the 2012 Japanese spring conference for the technology of plasticity, pp. 223-224, 2012.
[11] 成清吉, “圓柱旋轉壓縮成形理論分析與原型機製作,” 碩士論文, 國立高雄第一科技大學機械與自動化工程系, 高雄, 台灣, 2003.
[12] 曾文信, “圓環旋轉壓縮成形之研究,” 碩士論文, 國立屏東科技大學機械工程系, 屏東, 台灣, 2004.
[13] K. Tsutsui, Y. Kume, M. Kobashi, N. Kanetake, “Effect of processing temperature on microstructure of AZ61 magnesium alloy produced by compressive torsion processing,” Journal of Japan Institute of Light Metals, Vol. 59, No. 1, pp. 35-40, 2009.
[14] Y. Kume, S. Shibazaki, M. Kobashi, N. Kanetake, “Development of grain refinement in AZ61 magnesium alloy processd by compressive torsion with decreasing temperature,” Proceedings of the Japanese Joint Conference for the Technology of Plasticity, Vol.62, pp. 305-306, 2011.
[15] R. Ito, Y. Kume, M. Kobashi, N. Kanetake, “Effect of Specimen Size on High- Density Iron Powder Compact Formed by Compression and Shear Combined Loading,” Journal of the JSTP, Vol.54, no.634, pp. 1003-1007, 2013.
[16] N. KANETAKE, “Consolidation of Metal Powder,” Journal of the JSTP, Vol.56, no.651, pp. 259-260, 2015.
[17] H. S. Kim, “Finite element analysis of high pressure torsion processing,” Journal of Materials Processing Technology, Vol.113, pp. 617-621, 2001.
[18] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev1, T.G. Langdon, “Micro hardness and microstructural evolution in pure nickel during high-pressure torsion,” Scripta mater, Vol.44, pp. 2753-2758, 2001.
[19] G.H. Cao, A.M. Russell, C.G. Oertel, W. Skrotzki, “Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion,” Acta Materialia, Vol.98, pp. 103-112, 2015.
[20] M. Isik, M. Niinomi, K. Cho, M. Nakai, H. Liu, H. Yilmazer, Z. Horita, S. Sato, T. Narushima, “Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion,” Journal of the Mechanical Behavior of Biomedical Materials, Vol.59, pp. 226-235, 2016.
[21] ASTM E112-12, “Standard test methods for determining average grain size,” ASTM international, United States, 2013.
[22] P. S. Roodposhti, A. Sarkar, K. L. Murty, H. Brody, R. Scattergood, “Grain boundary sliding mechanism during high temperature deformation of AZ31 magnesium alloy.” Journal of Materials Science & Engineering A, Vol.669, pp. 171-177, 2016.
[23] JIS Z 2244, “Vickers hardness test-Test method,” Japanese industrial standard, Japan, 2009.
[24] F.K. Chen, T.B. Huang, S.J. Wang, “A study of flow-through phenomenon in the press forging of magnesium-alloy sheets,” Journal of Materials Processing Technology, Vol.187, pp. 770-774, 2007.
[25] 陳炫翰, “鎂合金AZ31 熱間壓延之相關研究,” 碩士論文, 國立中山大學機械與機電工程學系, 高雄, 台灣, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code