Responsive image
博碩士論文 etd-0802101-181022 詳細資訊
Title page for etd-0802101-181022
論文名稱
Title
利用濕法冶金與超音波輔助溶劑萃取法回收廢車廢觸媒中之鉑族金屬
Recovery of PGM's from Spent Autocatalyst Using Hydrometallurgy and Ultrasound-Assisted Solvent Extraction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-20
繳交日期
Date of Submission
2001-08-02
關鍵字
Keywords
廢車廢觸媒、鉑族金屬、王水浸漬、超音波、溶劑萃取、鋅粉置換、回收
ultrasound., platinum group metals, spent autocatalyst, solvent extraction, zinc cementation, recovery, aqua regia leaching
統計
Statistics
本論文已被瀏覽 5794 次,被下載 0
The thesis/dissertation has been browsed 5794 times, has been downloaded 0 times.
中文摘要
本研究利用濕法冶金與超音波輔助溶劑萃取方法,將收集自國內各種不同廢車廢觸媒轉化器中所含之鉑族金屬予以回收,自觸媒轉化器中取出之廢觸媒擔體,經過粗破碎與球磨後,混合成單一樣品進行回收之實驗。本研究之回收程序為:(1)利用王水浸漬方法,將廢車廢觸媒中之鉑族金屬(鉑、鈀與銠)溶解至液相中;(2)利用鋅粉置換方法,將王水浸漬液中之鉑族金屬與基本金屬分離,並達到濃縮鉑族金屬之目的;(3)鋅粉置換後所收集之貴金屬沉澱物,利用王水溶解並先後經過去除硝酸及鹽酸步驟,再度酸化溶於鹽酸溶液中,進行後續之溶劑萃取;(4)在鹽酸介質中之鉑族金屬富集液,利用溶劑萃取方法進行鉑族金屬的分離與純化,並探討超音波震盪輔助萃取的萃取效果。
利用王水浸漬廢車廢觸媒回收鉑族金屬時,操作的固液比越小,鉑族金屬的溶出量越大,浸漬時間3小時可達到最大之鉑族金屬溶出量,此階段之鉑族金屬回收率為:鉑與銠80-90%、鈀大於99%。本研究發現,利用醋酸溶解廢車廢觸媒中之基本金屬其效率不高,無法有效移除廢車廢觸媒中之基本金屬而達到分離基本金屬與鉑族金屬之目的,因此,改以鋅粉置換作為分離基本金屬與鉑族金屬之方法。在後續進行鋅粉置換時,需先將王水浸漬液稀釋,再調整溶液pH值至2以上,始可在最少的鋅粉用量達到完全置換(置換率大於99%)之目的。經置換濃縮後之鉑族金屬富集液中除鉛與鋅外,已將其他金屬予以分離。
本研究在利用DOS溶劑萃取鈀時發現,利用超音波震盪輔助萃取可大幅縮短萃取時間至數分鐘內萃取完成。利用DOS萃取時,鉑族金屬富集液之鹽酸濃度不影響其萃取效率,且鉑與銠不被萃取。在利用TOA溶劑萃取鉑時發現,若以超音波輔助震盪萃取,銠在鹽酸濃度大於4M時仍有被萃取情況產生,因此,TOA作為鉑與銠的選擇性萃取劑其分選效率不如TBP溶劑。利用TBP萃取鉑時,會受到鉑族金屬富集液之鹽酸濃度所影響,在鹽酸濃度5M時,其萃取反應快速,效率最佳,在不藉助超音波震盪時,其萃取時間在20-30秒即可達到萃取平衡,但需採用多階段萃取始可將鉑全部萃出,而銠則不被萃取。在鈀與鉑先後被萃出後,萃餘液僅剩鉑族金屬中的銠存在,因此,利用DOS與TBP萃取鉑族金屬可將這三種金屬完全分離。鈀之反萃液中幾無其他基本金屬存在,而鉑之反萃液與含銠之萃餘液中含有鉛與鋅,需進一步將其移除後始可達到較佳的純度。
經過王水浸漬後剩下的觸媒殘渣經TCLP毒性溶出試驗結果得知,溶出之重金屬濃度可符合現行法規標準。在整個回收廢車廢觸媒中之鉑族金屬的過程中所產生的廢液與廢酸氣,必需加以妥善處理與控制,以避免造成環境的二次污染。

Abstract
In this study, various techniques of hydrometallurgy and ultrasound-assisted solvent extraction were used to recover the platinum group metals (PGM’s) from a composite sample of honeycomb-type autocatalysts. After they were removed from the converter casings, the autocatalyst substrates were first crushed and then ground by a ball mill. The recovery procedures employed are shown as follows: (1) dissolve PGM’s from ground spent autocatalyst by aqua regia leaching; (2) separate PGM’s from base metals in the aqua regia leachate by metal cementation using zinc powder so that PGM’s can be precipitated out; (3) the PGM’s precipitate was first dissolved by aqua regia, then proceed to remove nitrate and hydrochloride within. The residue was further dissolved in hydrochloride acid as a preparation step for solvent extraction; (4) the PGM’s pregnant solution of hydrochloride acid was treated by solvent extraction and stripping to separate and purify each component of PGM’s. Effects of ultrasound agitation on the efficiency of solvent extraction was also evaluated in this work.
Results of aqua regia leaching experiments have shown that the quantity of dissolved PGM’s increased as the solid-to-liquid ratio decreased. The maximum dissolved quantity of PGM’s could be obtained by a 3-hr leaching time. At this stage, the PGM’s recoveries are 80-90% for platinum and rhodium and greater than 99% for palladium. The result of a preliminary test has indicated that acetic acid can not effectively separate the PGM’s and base metals. Thus, the method of cementation by zinc powder was employed to separate PGM’s from base metals. Before cementation, the aqua regia leachate was diluted and pH-adjusted to greater than 2. In so doing, an almost complete cementation (>99%) could be obtained by the least quantity of zinc powder. In addition, the base metals occurred with the PGM’s precipitate have been minimized except lead and zinc.
While palladium was extracted by di-n-octyl sulfide (DOS), ultrasound assistance has rendered a complete extraction within a few minutes. At this stage, the extraction efficiency was found to be independent of the HCl concentration. It was found that platinum and rhodium were not extracted by DOS. When platinum was extracted by tri-n-octylamine (TOA) and assisted by ultrasound, rhodium will be extracted at the HCl concentration higher than 4M. Thus, TOA is not an effective chemical for selective extraction of platinum. TOA was then replaced by tributyl phosphate (TBP). Experimental results have indicated that the extraction of platinum using TBP was affected by the HCl concentration. The best result was obtained when the HCl concentration was 5M. Extraction by TBP was found to be fast. It took only 20-30 seconds to reach the equilibrium even with no ultrasound assistance. But multi-stage extractions are generally required to extract platinum completely. Rhodium was found to be not extracted by TBP. After palladium and platinum were extracted, only rhodium was remained in the reffinate. In summary, solvent extraction using DOS and TBP has made it possible to separate palladium, platinum, and rhodium effectively. In the palladium stripping solution almost no base metals was determined. However, zinc and lead were found in the platinum stripping solution and the rhodium-containing raffinate. These base metals should be removed to achieve a better purity for each precious metal.
The TCLP (i.e., a leaching test for toxicity) result of the autocatalyst substrate after aqua regia leaching has found to be non-hazardous. However, several streams of wastewater and acid gas generated in the recovery process should be properly managed to avoid the secondary pollution.

目次 Table of Contents
目錄
頁次
謝誌……………………………………………………………………….i
摘要…………………………………………………………………........ii
Abstract………………………………………………………………….iv
目錄…………………………………………………………………...…vi
表目錄……………………………………………………………………x
圖目錄…………………………………………………………………..xii
照片目錄………………………………………………………………..xv

第一章 前言……………………………………………………………1
1.1 研究緣起…………………………………………………………...1
1.2 研究目的…………………………………………………………...3
1.3 研究內容…………………………………………………………...3

第二章 文獻回顧……………………………………………………4
2.1 廢車廢觸媒之基本性質…………………………………………...4
2.1.1 汽車觸媒轉化器的型式與組成………………………………4
2.1.2 觸媒擔體的化學性質…………………………………..…….4
2.1.3 汽車觸媒中鉑族金屬組成及含量…………………………7
2.2 自廢車廢觸媒中回收貴金屬之技術……………………………...8
2.2.1 濕法冶金………………………………………………………8
2.2.2 火法冶金……………………………………….…………..12
2.2.3 氣相揮發法…………………………………………………..13
2.3 鉑族金屬的富集與分離………………………………………...14
2.3.1 貴金屬之鋅粉置換反應…………………………………..…14
2.3.2 液相-液相萃取……………………………………………...15
2.4 其他貴金屬富集與分離之相關研究………………………….....20
2.4.1 離子交換樹脂與溶劑萃取/離子交換樹脂方法…………..20
2.4.2 液態薄膜萃取………………………………………………21
2.4.3 化學鍍………………………………………………………22
2.4.4 活性碳纖維還原……………………………………………23
2.4.5 光催化還原…………………………………………………23
2.5 超音波技術……………………………………………………..24

第三章 實驗材料、設備與方法……………………………………..26
3.1 實驗材料……………………………………………………...…26
3.1.1 廢車廢觸媒…………………………………………………..26
3.1.2 其他試藥及材料………………………………..……………29
3.2 實驗設備……………………………………………………..…...31
3.2.1 醋酸前處理實驗……………………………..………………31
3.2.2 貴金屬浸漬溶出實驗………………………………..………31
3.2.3 超音波輔助溶劑萃取實驗…………………………………31
3.2.3 其他相關儀器設備………………………………..…………32
3.3 實驗流程與方法………………………………………..………...34
3.3.1 實驗流程…………………………………………..…………34
3.3.2 廢車廢觸媒之金屬全含量分析…………………...………...38
3.3.3 廢車廢觸媒之化學組成分析………………………………..38
3.3.4 X-光繞射(XRD)晶相分析………………………………….39
3.3.5 溶劑萃取之金屬濃度分析……………………………..……40
3.3.6 觸媒之毒性特性溶出程序…………………………………..40

第四章 結果與討論…………………………………………………..43
4.1 廢車廢觸媒基本性質分析……………………..………………...43
4.1.1 廢觸媒化學組成及X-光繞射(XRD)晶相分析………….43
4.1.2 廢觸媒鉑族金屬含量分析…………………………………..44
4.2 基本金屬與鉑族金屬之溶出試驗……………………………...46
4.2.1 醋酸前處理…………………………………..………………46
4.2.2 王水浸漬實驗…………………………………..……………52
4.2.3 廢觸媒毒性特性溶出試驗…………………………………..55
4.3 鋅粉置換反應…………………………………………………...56
4.4 鉑族金屬溶劑萃取與反萃………………………………..……...63
4.4.1 鈀之萃取………………………………………………..……63
4.4.1.1 不同DOS濃度與鈀濃度對萃取效率之影響……..……63
4.4.1.2 鉑族金屬富集液中鹽酸濃度對DOS萃取效
率之影響…………………….………………………….63
4.4.1.3 萃取時間對DOS萃取效率之影響…..………………....66
4.4.1.4 鉛與鋅對DOS萃取之影響……………………………..68
4.4.2 鉑之萃取……………………………………………………..68
4.4.2.1 鉑族金屬富集液中鹽酸濃度對TOA萃取效
率之影響..……………………………………………....68
4.4.2.2 鉑族金屬富集液中鹽酸濃度對TBP萃取效
率之影響….………………………………………...…..69
4.4.2.3 不同萃取時間對TBP萃取效率之影響……...…..……..71
4.4.2.4 鉛與鋅對TBP萃取之影響……………………………...71
4.4.3 銠之萃取……………………………………………………..73
4.4.4 鈀之反萃……………………………………………………..75
4.4.5 鉑之反萃…………………………………………………..…76
4.5 綜合討論…...……………………………………………………..82

第五章 結論與建議…………………………………………………..88
5.1 結論………………………………………………………….…88
5.2 建議…………………………………………………………….89

參考文獻………………………………………………………………..90

附錄……………………………………………………………………..97
附錄一 醋酸前處理階段實驗數據………………………………..97
附錄二 王水浸漬廢車廢觸媒階段實驗數據……………………100
附錄三 鋅粉置換階段實驗數據…………………………………101
附錄四 溶劑萃取階段實驗數據…………………………………103

參考文獻 References
參考文獻

1.《稀有金屬手冊》編輯委員會,1995,「稀有金屬手冊 下冊」,冶金工業出版社,北京。
2.林浚泉,1989,“鉑族金屬之產銷趨勢”,能源、資源與環境季刊,第2卷,第2期,第15-19頁。
3.Johnson Matthey, 2000, Platinum 2000 Interim Review, http://www.platinum.matthey.com/publications/JMIntS&D.pdf.
4.Hoffmann, J. E., 1988, “Recovering Platinum-Group Metals from Auto Catalysts”, Journal of Metals, Vol. 29, pp. 40-44.
5.Howitt, J. S., 1986, “Advances in Automotive Catalysts Supports”, Studies in Surface Science and Catalysis Vol. 30: Catalysis and Automotive Pollution Control, Proceedings of the First International Symposium (CAPOC I), Brussels, September 8-11, pp. 301-311.
6.利威特汽車資訊中心,1999,利威特汽車科技資訊網公開資料,網址:http://www.lvt.com.tw/images/207050-1.htm。
7.林浚泉,1991,“自廢汽車觸媒中回收鉑族金屬”,礦冶,第351卷,第4期,第39-44頁。
8.李秋煌、陳郁文,1996,“汽機車觸媒轉化器”,化工,第43卷,第1期,第44-66頁。
9.戴國邦、王興濬,1989,“廢汽車觸媒轉化器中鉑族貴金屬火法冶煉回收試驗研究”,貴金屬再生及其污染防治技術研討會論文集,6月14日,台南市,第121-149頁。
10.林景崎,1991,“貴金屬之再生”,礦業技術,第29卷,第236-254頁。
11.Mishra, R. K., 1988, “Recovery of Platinum Group Metals from Automobile Catalyst Converters-A Review”, Precious Metal, Ed. M. C. Jha and S. D. Hill, The Minerals, Metals & Materials Society, pp. 483-499.
12.D’Anielo, M. J., 1982, “Noble Metal Recovery from Automotive Catalysts”, Recycling of Automotive Catalyst SP-508, International Congress and Exposition, Detroit, Michigan, Feb 22-26, Report No. 820187.
13.Bonucci, J. A. and P. D. Parker, 1984, “Recovery of PGM from Automobile Catalytic Converters”, Precious Metals Mining, Extraction and Processing, Ed. V. Kudryk et al, Conference Proceedings, TMS-AIME, pp. 463-482.
14.Letowski, F. K. and P. A. Distin, 1985, “Platinum and Palladium Recovery from Spent Catalysts by Aluminum Chloride Leaching”, Recycling and Secondary Recovery of Metals, Ed. P. R. Taylor et al, TMS-AIME Symposium, Fort Lauderdale, Dec. 1-4, pp. 735-745.
15.Tyson, D. R. and R. G. Bautista, 1987, “Leaching Kinetics of Platinum and Palladium from Spent Automotive Catalysts”, Separation Science and Technology, Vol. 22, No. 2&3, pp. 1149-1167.
16.Angelidis, T. N. and E. Skouraki, 1996, “Preliminary Studies of Platinum Dissolution from a Spent Industrial Catalyst”, Applied Catalysis A: General, Vol. 142, pp. 387-395.
17.Benson, M., C. R. Bennett, J. E. Harry, M. K. Patel, M. Cross, 2000, “The Recovery Mechanism of Platinum Group Metals from Catalytic Converters in Spent Automotive Exhaust Systems”, Resources, Conservation and Recycling, Vol. 31, pp. 1-7.
18.Kim, C. H., S. I. Woo and S. H. Jeon, 2000, “Recovery of Patinum-Group Metals from Recycled Automotive Catalytic Converters by Carbochlorination”, Industrial Engineering Chemistry, Vol. 39, pp. 1186-1192.
19.Anacleto, A. L. and J. R. Carvalho, 1996, “Mercury Cementation from Chloride Solutions Using Iron, Zinc and Aluminum”, Minerals Engineering, Vol. 9, No. 4, pp. 385-397.
20.《稀有金屬手冊》編輯委員會,1995,「稀有金屬手冊 上冊」,冶金工業出版社,北京。
21.Benefield, L. D., J. F. Judkins and B. L. Weand, 1982, “Process Chemistry for Water and Wastewater Treatment”, Prentice-Hall, Inc., Englewood Cliffs, N. J., U. S. A.
22.Lee, H. Y., S. G. Kim and J. K. Oh, 1997, “Cementation Behavior of Gold and Silver onto Zn, Al, and Fe Powders from Acid Thiourea Solution”, Canadian Metallurgical Quarterly, Vol. 36, No. 3, pp. 149-155.
23.Ritcey, G. M. and A. W. Ashbrook, 1984, “Solvent Extraction: Principles and Applications to Process Metallurgy”, Elsevier Science Publishing Company, Inc., N.Y., U.S.A..
24.Cleare, M. J., P. Charlesworth and D. J. Bryson, 1979, “Solvent Extraction in Platinum Group Metal Processing”, Journal of Chemical Technology and Biotechnology, Vol. 29, pp. 210-214.
25.《有色金屬工業分析叢書》編輯委員會,1996,「貴金屬分析」,冶金工業出版社,北京。
26.翁林廷彬,1990,“鉑族金屬之回收”,礦業技術,第28卷,第3期,第191-210頁。
27.Cleare, M. J., P. Charlesworth and D. J. Bryson, 1979, “Solvent Extraction in Platinum Group Metal Processing”, Journal of Chemical Technology and Biotechnology, Vol. 29, pp. 210-214.
28.Berg, E. W. and W. L. Senn, 1958, “Separation of Rhodium and Iridium by Multiple Fractional Extraction”, Analytica Chimica Acta, Vol. 19, pp. 109-113.
29.Khattak, M. A. and R. J. Magee, 1969, “Extraction of Platinum Metals by High-molecular-weight Amines. Rhodium(Ⅲ) Systems”, Analytica Chimica Acta, Vol. 45, pp. 297-304.
30.Diamantatos, A., 1973, “The Solvent Extraction of Platinum-group Metals and Gold with 2-mercaptobenzothiazole”, Analytica Chimica Acta, Vol. 66, pp. 147-151.
31.Mojski, M., 1980, “Extraction of Platinum Metals from Hydrochloric Acid Medium with Triphenylphosphine Solution in 1,2-dichloroethane”, Talanta, Vol. 27, pp. 7-10.
32.Barnes, J. E. and J. D. Edwards, 1982, “Solvent Extraction at Inco’s Acton Precious Metal Refinery”, Chemistry and Industry, Vol. 6, pp. 151-155.
33.Al-Bazi, S. J. and H. Freiser, 1987, “Mechanistic Studies on the Extraction of Palladium(Ⅱ) with Dioctyl Sulfide”, Solvent Extraction and Ion Exchange, Vol. 5, No. 2, pp. 265-275.
34.Al-Bazi, S. J. and H. Freiser, 1989, “Phase-transfer Catalysts in Extraction Kinetics: Palladium Extraction by Dioctyl Sulfide and Kelex 100”, Inorganic Chemistry, Vol. 28, pp. 417-420.
35.翁林廷彬、陳惠雯、林景崎,1991,“硫化物萃取劑純化廢料鈀溶液之研究”,礦冶,第35卷,第2期,第112-121頁。
36.Cote, B. and G. P. Demopoulos, 1993, “New 8-Hydroxyquinoline Derivative Extractants for Platinum Group Metals Separation Part 3: Pt(Ⅳ) Extraction Equilibria and Stripping”, Solvent Extraction and Ion Exchange, Vol. 12, No. 3, pp. 517-540.
37.Benguerel, E., G. P. Demopoulos, G. Cote and D. Bauer, 1994, “An Investigation on the Extraction of Rhodium from Aqueous Chloride Solutions with 7-substituted 8-hydroxyquinolines”, Solvent Extraction and Ion Exchange, Vol. 12, No. 3, pp. 497-516.
38.Yan, G. and J. Alstad, 1995, “Separation of Rhodium from Ruthenium and Iridum by Fast Solvent Extraction with HDEHP”, Journal of Radioanalytical and Nuclear Chemistry, Vol. 196, pp. 287-293.
39.Cote, B. and G. P. Demopoulos, 1995, “New 8-Hydroxyquinoline Derivative Extractants for Platinum Group Metals Separation Part 4: Kinetics of Pd(Ⅱ) Extraction and Stripping”, Solvent Extraction and Ion Exchange, Vol. 13, No. 1, pp. 83-107.
40.Benguerel, E., G. P. Demopoulos and G. B Harris, 1996, “Speciation and Separation of Rhodium(Ⅲ) from Chloride Solutions: A Critical Review”, Hydrometallurgy, Vol. 40, pp. 135-152.
41.Sherikar, A. V., P. N. Phalke and P. M. Dhadke, 1997, “Solvent Extraction and Separation Studies of Platinum Using Bis(2-ethylhexyl) Hydrogen Phosphate”, Bulletin of the Chemical Society of Japan, Vol. 70, pp. 805-808.
42.Nowottny, C., W. Halwachs and K. Schugerl, 1997, “Recovery of Platinum, Palladium and Rhodium from Industrial Process Leaching Solution by Reactive Extraction”, Separation and Purification Technology, Vol. 12, pp. 135-144.
43.Alam, M. S. and K. Inoue, 1997, “Extraction of Rhodium from Other Platinum Group Metals with Kelex 100 from Chloride Media Containing Tin”, Hydrometallurgy, Vol.46, pp. 373-382.
44.Bandekar, S. V. and P. M. Dhadke, 1998, “Solvent Extraction Separation of Platinum(Ⅳ) and Palladium(Ⅱ) by 2-ethylhexyl Phosphonic Acid Mono-2-ethylhexyl Ester(PC-88A)”, Separation and Purification Technology, Vol. 13, pp. 129-135.
45.Zou, L., J. Chen and X. Pan, 1998, “Solvent Extraction of Rhodium from Aqueous Solution of Rh(Ⅲ)-Sn(Ⅱ)-Cl- System by TBP”, Hydrometallurgy, Vol. 50, pp 193-203.
46.Lokhande, T. N., M. A. Anuse and M. B. Chavan, 1998, “Liquid-liquid Extraction of Palladium(Ⅱ) with N-n-octylaniline from Hydrochloric Acid Media”, Talanta, Vol. 46, pp. 163-169.
47.Al-Bazi, S. J. and A. Chow, 1984, “Platinum Metals-Solution Chemistry and Separation Methods (Ion-exchange and Solvent Extraction)”, Talanta, Vol. 31, pp. 815-836.
48.Gaita, R. and S. J. Al-Bazi, 1995, “An Ion-Exchange Method for Selective Separation of Palladium, Platinum and Rhodium from Solutions Obtained by Leaching Automotive Catalytic Converters”, Talanta, Vol. 42, pp. 249-255.
49.Els, E. R., L. Lorenzen and C. Aldrich, 1997, “Technical Note: The Recovery of Palladium with the Use of Ion Exchange Resins”, Minerals Engineering, Vol. 10, pp. 1177-1181.
50.Cortina, J. L., E. Meinhardt, O. Roijals and V. Marti, 1998, “Modification and Preparation of Polymeric Adsorbents for Precious-metal Extraction in Hydrometallurgical Processes”, Reactive and Functional Polymers, Vol. 36, pp. 149-165.
51.Rovira, M., J. L. Cortina, J. Arnaldos and A. M. Sastre, 1998, “Recovery and Separation of Platinum Group Metals Using Impregnated Resins Containing Alamine 336”, Solvent Extraction and Ion Exchange, Vol. 16, pp. 1279-1302.
52.Fu, J., S. Nakamura and K. Akiba, 1995, “Extraction of Platinum(Ⅳ) with Trioctylamine and Its Application to Liquid Membrane Transport”, Separation Science and Technology, Vol. 30, No. 4, pp. 609-619.
53.Fu, J., S. Nakamura and K. Akiba, 1995, “Carrier-mediated Transport of Platinum (Ⅳ) through a Supported Liquid Membrane Impregnation an 8-quinolinol Derivative”, Journal of Membrane Science, Vol. 105, pp. 281-286.
54.Fu, J., S. Nakamura and K. Akiba, 1995, “Selective Transport of Platinum(Ⅳ) from a Palladium(Ⅱ) Mixture Across a Liquid Membrane Impregnated with an 8-quinolinol Derivative”, Journal of Membrane Science, Vol. 107, pp. 283-288.
55.Kakoi, T., N. Horinouch, M. Goto and F. Nakashio, 1996, “Recovery of Palladium from an Industrial Wastewater Using Liquid Surfactant Membranes”, Separation Science and Technology, Vol. 31, No. 3, pp. 381-399.
56.Ashrafizadeh, S. N. and G. P. Demopoulos, 1996, “Extraction of Rhodium Chlorocomplexes and Acid through a Supported Liquid Membrane of Kelex 100”, Separation Science and Technology, Vol. 31, No. 7, pp. 895-914.
57.Chaudry, M. A., N. U. Islam and N. U. Rabman, 1997, “Extraction of Pd(Ⅱ) Ions Using Tri-n-octylamine Xylene Base Support Liquid Membrne”, Journal of Radioanalytical and Nuclear Chemistry, Vol. 218, No. 1, pp. 53-60.
58.Kang, E. T., Y. P. Ting, K. G. Neoh and K. L. Tan, 1995, “Electroless Recovery of Precious Metals from Acid Solution by N-containing Electroactive Polymers”, Synthetic Metals, Vol. 69, pp. 477-478.
59.Angelidis, T. N. and K. A. Kydros, 1997, “Fundamental Rotating Disk Study of Platinum Recovery from Aqueous Solution by a Reduction/Collection Technique”, Industrial Engineering Chemistry Research, Vol. 36, pp. 1758-1766.
60.Fu, R., H. Zeng and Y. Lu, 1995, “The Reduction of Pt(Ⅳ) with Activated Carbon Fibers-An XPS Study, Carbon, Vol. 33, No. 5, pp. 657-661.
61.Simanova, S. A., N. M. Burmistrova, A. A. Lysenko, A. V. Shchukarev, O. V. Astashkina and N. V. Khramkova, 1998, “Features of Sorption Recovery of Palladium(Ⅱ) from Solutions of Chloro and Sulfato Complexes with New Carbon Fibers”, Russian Journal of Applied Chemistry, Vol. 71, No. 3, pp. 387-392.
62.Borgarello, E., N. Serpone, G. Emo, R. Harris, E. Pelizzetti and C. Minero, 1986, “Light-induced Reduction of Rhodium(Ⅲ) and Palladium(Ⅱ) on Titanium Dioxide Dispersions and the Selective Photochemical Separation and Recovery of Gold(Ⅲ),Platinum(Ⅳ), and rhodium(Ⅲ) in Chloride Media”, Inorganic Chemistry, Vol. 25, pp. 4499-4503.
63.Angelidis, T. N., M. Koutlemani and I. Poulios, 1998, “Kinetic Study of the Photocatalytic Recovery of Pt from Aqueous Solution by TiO2, in a Closed-loop Reactor”, Applied Catalysis B: Environmental, Vol. 16, pp. 347-357.
64.Shoh, A., 1988, “Industrial Applications of Ultrasound”, In: Ultrasound: Its Chemical, Physical, and Biological Effects, K. S. Suslick (ed.), VCH Publishers, Inc., N. Y., U. S. A.
65.Kuttruff, H., 1991, “Ultrasonics Fundamentals and Applications”, Elsevier Science Publishing Company, Inc., N. Y., U. S. A.
66.Mason, T. J., 1990, “Sonochemistry: The Uses of Ultarsound in Chemistry”, The Royal Society of Chemistry, Thomas Graham House, Cambridge, U. K.
67.Perez-Cid, B., I. Lavilla and C. Bendicho, 1998, “Speeding Up of a Three-stage Sequential Extraction Method for Metal Speciation Using Focused Ultrasound”, Analytica Chimica Acta, Vol. 360, pp. 35-41.
68.行政院環境保護署環境檢驗所,1998,「土壤、沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法」,NIEA S331.60B。
69.ASTM, 1991, “Standard Test Methods for Dissolution of Refuse-Derived Fuel (RDF) Ash Samples for Analyses of Metals, E886-88”, Annual Book of ASTM Standards, Vol. 11.04, pp. 516-519.
70.JCPDS, 1989, “Powder Diffradtion File: Inorganic Phases Alphabetical Index”, International Center for Diffraction Data, Swarthmore, U. S. A.
71.行政院環境保護署環境檢驗所,1994,「事業廢棄物毒性特性溶出程序」,NIEA R201.10T。
72.行政院環境保護署,有害事業廢棄物認定標準,中華民國九十年三月七日(九十)環署廢字第○○一三九二六號令訂定全文九條。
73.Angelidis, T. N. and S. A. Sklavounos, 1995, “A SEM-EDS Study of New and Used Automotive Catalysts”, Applied Catalysis A: Gerenal, Vol. 133, pp. 121-132.
74.賴耿陽,2000,「貴金屬元素化學與應用」,復漢出版社,台南,第39-40頁。
75.Margulis, M. A., 1995, “Sonochemistry and Cavitation”, Gordon and Breach Science Pubilshers, Luxembourg.
76.Argekar, A. P. and A. K. Shetty, 1998, “Extraction of Lead(II) with Cyanex 302 and Its Spectrophotometric Determination with PAR”, Talanta, Vol. 45, pp. 909-915.
77.周念萍,1979,“LIX34萃取鋅之研究”,中正理工學院化學研究所碩士論文,桃園。
78.Johnson Matthey, 2001, Platinum Today: Prices, http://www.platinum.matthey.com/prices/April2001.html.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.3.154
論文開放下載的時間是 校外不公開

Your IP address is 3.15.3.154
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code