Responsive image
博碩士論文 etd-0802104-134224 詳細資訊
Title page for etd-0802104-134224
論文名稱
Title
Co1-XO-MgO固溶燒結體的熱蝕形態演變
On the development of thermally etched morphology of Co1-XO-MgO polycrystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-01
繳交日期
Date of Submission
2004-08-02
關鍵字
Keywords
熱蝕丘、熱蝕坑、熱腐蝕
etching hillocks, thermal etching, etching pit
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
論文摘要
本實驗將Co1-xO粉末(有或沒有摻雜20mol% Mg2+),於1600°C燒結5小時,再於400°C、800°C或於1500°C熱蝕刻10分鐘至12小時,並藉由掃瞄式電子顯微鏡(SEM)觀察比較不同溫度下,含鎂或不含鎂Co1-xO多晶體表面的熱蝕形態演變。我們使用空冷的方式,保留在高溫下的熱蝕形態,期望能捕捉到熱蝕丘坑的動態成長過程。在400°C及800°C較低的熱蝕溫度下,材料表面產生鬆弛及尖晶石(spinel)析出; 而在1500°C較高的熱蝕溫度下,有因凝結生成的Co1-XO磊晶(epitaxial)散佈於台階及階檻上。另外,在1500°C熱蝕刻10分鐘到12小時,在Co1-XO多晶基材上,由於差排的應變能、晶體的表面自由能變化、不純物、差排露頭處溶液不飽和的程度的不同,以致於各晶粒上的熱蝕形態不盡相同。發現在Co1-xO的(111)面上,產生三角至六角形的溶蝕坑,且摻雜了Mg2+離子之後,使得溶蝕坑的幾何形狀大幅改變,也就是說在相同的熱處理條件下,由於陽離子的摻雜效應,使得不同方向的溶解速率有彼此消長的情形。此外,頂端具熱蝕坑的天壇狀生長丘,顯示在若干情況下晶體成長丘與差排露頭熱蝕可同時發生。
Abstract
Abstrate
Co1-XO polycrystals, prepared by sintering at 1600oC with or without Mg2+-dopant ,were thermally etched at 400-1500oC for 10 min-12hr and studied by scanning electron microscopy regard to the effects of temperature and Mg2+-dopant on etching development. In low etching temperature (400-800 oC), vacancy relaxation process and spinel precipitate produced on the surface of Co1-XO-MgO polycrystals. In high etching temperature (1500 oC), Co1-XO epitaxy was spread on the steps and ledges. In addition, Co1-XO was thermally etched at 1500 oC for 10min to 12hr, we found triangular to hexagonal etch pits were produced. However, Mg2+-dopant changed the geometric shape of the pit opening. Besides, growth hillocks with corrugated terrace steps at edge and a pit at center showed that growth and etching of crystal can happen in the same time.
目次 Table of Contents
目錄 頁次
論文摘要 I
目錄 III
圖表目錄 V
一、前言 1
二、實驗步驟及方法 4
2-1. 配粉 4
2-2. 壓片 4
2-3. 燒結熱處理 4
2-4. X光繞射分析 4
2-5. 熱蝕刻 5
2-6. 掃瞄式電子顯微鏡觀察 5
2-7. 穿透式電子顯微鏡觀察 5
三、實驗結果 6
3-1. X光繞射分析 6
3-2. 掃瞄式電子顯微鏡觀察 6
3-2-1. 400°C~1500°C熱蝕刻10分鐘後的表面形貌改變 6
3-2-2. 1500°C熱蝕刻10分鐘到12小時的表面形貌改變 7
3-3. 穿透式電子顯微鏡觀察 9
四、討論 10
4-1. Co1-XO的表面形貌改變: 空孔的鬆弛及尖晶石析出 10
4-2. 熱蝕坑丘的成核:差排、露頭處與抑制劑 12
4-3. 熱蝕坑丘的生長:差排露頭處、合併與抑制劑 13
4-4. 缺陷聚簇(defect clusters)的間距 15
五、結論 17
六、參考文獻 19























圖表目錄 頁次
圖1. Co1-XO 1600°C燒結5小時空冷後之X光繞射圖………………24
圖2. 莫爾比8 : 2的Co1-XO-MgO 1600°C反應燒結
5小時空冷後之X光繞射圖…………………………………...25
表1. 晶格常數的比較……………………………………………........ 26
圖3. Co1-XO 1600°C燒結5小時空冷後的試片表面,
經400°C熱蝕刻10分鐘後的SEI影像……………………….27
圖4. Co1-XO 1600°C燒結5小時空冷後的試片表面,
經800°C熱蝕刻10分鐘後的SEI影像………………………28
圖5. Co1-XO 1600°C燒結5小時空冷後的試片表面,
經1100°C熱蝕刻10分鐘後的SEI影像……………………..29
圖6. Co1-XO 1600°C燒結5小時空冷後的試片表面,
經1500°C熱蝕刻10分鐘後的SEI影像……………………..30
圖7. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經400°C
熱蝕刻10分鐘後的SEI影像………………………….............31
圖8. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經800°C
熱蝕刻10分鐘後的SEI影像……………………….................32
圖9. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經800°C
熱蝕刻10分鐘後的SEI影像…………………………............33
圖10. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經800°C
熱蝕刻10分鐘後(a)圖9(b)♁處EDX能譜;
(b)Mg與Co 之X光分佈圖…………………………………..34
圖11. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經1100°C
熱蝕刻10分鐘後的SEI影像………………………………….35
圖12. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經1500°C
熱蝕刻10分鐘後的SEI影像…………………………………36
圖13. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經1500°C
熱蝕刻10分鐘後的SEI影像………………………………….37
圖14. Co1-XO 1600°C燒結5小時空冷後的試片(111)
表面,經1500°C熱蝕刻10分鐘至12小時所
產生六角形差排熱蝕坑的形態演變……………………………38
圖15. Co1-XO 1600°C燒結5小時空冷後的試片(111)
表面,經1500°C熱蝕刻1小時至3小時所
產生四方形熱蝕坑的形態演變………………………………..43
圖16. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片(111)表面,經
1500°C熱蝕刻10分鐘至 12小時所產生三角
以至於六角形熱蝕坑的形態演變……………………………..44
圖17. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片(100)表面,經
1500°C熱蝕刻1小時至 12小時所產生四方
形熱蝕坑的形態演變…………………………………………..50
圖18. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後的試片表面,經1500°C
熱蝕刻3小時至12小時所產生的熱蝕丘…………………….53
圖19. 莫爾比8 : 2的Co1-XO-MgO在1600°C固溶
燒結5小時空冷後,經1500°C熱蝕刻10分
鐘後試片的TEM照片……………………………………........54
附錄一. Co1-XO岩鹽結構………………………………………………55
附錄二. Co3-δO4尖晶石結構……………………………………………56
附錄三. CoO-MgO的相圖……………………………………………..57
附錄四. MgO、CoO、Co3O4的JCPDS files………………………….58
參考文獻 References
Batterman B. M. (1957) Hillocks, pits, and etch rate in germanium crystal. J. Appl. Phys. 28, 1236-1241.
Brantley S.L., Crane S.R., Crerar D.A., Hellmann R., and Stallard R. (1986) Dissolution at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50, 2349-2361.
Cabrera N. (1956) La germination des piqures d’attaque et des germes d’oxyde sur les dislocations. J. Chim. Phys. 53, 675-681.
Cabrera N. (1960) Kinematic theory of crystal dissolution and its application to etching. In Reactivity of Solids (ed. J. H. DeBoer),
North –Holland, Amsterdam, pp. 345-351
Cabrera N. and Levine M. M. (1956) On the dislocation theory of evaporation of crystals. Phil. Mag. 1, 450-458.
Chang C.C. and Shen P. (2000) Thermal-etching development of
α-Zn2SiO4 polycrystals: effects of lattice imperfections, Mn-dopant and capillary force. Materials Science and Engineering A 288, 42-46.
Chen J. and Shen P. (1998) Defect clusters and superstructure of Zr4+-dissolved Ni1-xO. J. Solid State Chem. 140, 361-370.
Chiang Y. M., Birnie D. P. and Kingery W. D. (1997) Physical Ceramics : Principles for Ceramic Science and Engineering. John Wiley & Sons, Inc., New York, pp. 1-187.
Cornell R. M., Posner A. M. and Quirk J. P. (1974) Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem. 36, 1937-1946.
Fisher B., Tannhauser D. S. (1966) Electrical properties of cobalt monoxide. J. Chem. Phys. 44, 1663-1672.
Ghosh T. K. and Clarke F. J. P. (1967) Etching and polishing studies on magnesium oxide single crystals. British J. Appl. Phys. 12, 44-50.
Gratz A. J., Bird P., and Quiro G. B. (1990) Dissolution of quartz in aqueous basic solution, 106-236°C: Surface kinetics of “ perfect” crystallographic faces. Geochim. Cosmochim. Acta 54, 2911-2922.
Gilman J. J., Johnston W. G., and Sears G. W. (1958) Dislocation etch pit formation in lithium fluoride. J. Appl. Phys. 29, 747-754.
Harvey W. W. and Gatos H. C. (1958) The reaction of germanium with aqueous solutions. I. Dissolution kinetics in water containing dissolved oxygen. J. Electrochem. Soc. 105, 654-660.
Heimann R. B. (1982) Principles of chemical etching ­ The art and science of etching crystals. In Crystal ­ Growth, Properties, and Applications (ed. J. Grabmaier), Vol. 8, pp. 173-274. Springer.
Herring C. (1953) Structure and Properties of Solid Surface. Ed. Gomer R. and Smith C. S., University of Chicago Press, Chapter 1.
Hirokawa T., Honda K. and Shibuya T. (1974) Formation of etch hillocks in white tin. J. Cryst. Growth 24/25, 484-487.
Hölscher U. (1983) Dr. rer. nat. –Dissertation, Technische Universität Clausthal
Horn F. H. (1952) Screw dislocation, etch figures, and holes. Phil. Mag. 43, 1210-1213.
Ives M. B. (1963) On kink kinetics in crystal dissolution. J. Phys. Chem. Solids 24, 275-281.
Ives M. B. and Plewes J. T. (1965) Inhibited dissolution of {111} surface of single crystal of lithium fluoride cleavages. J. Chem. Phys. 42, 293-296.
Jeng M. L. and Shen P. (2000) Paracrystal formation from Ni1-xO and CaO upon interdiffusion. J. Solid State Chem. 152, 421-427.
Joshi M. S., Kotru P. N., and Ittyachen M. A. (1978) Revelation of stepped dislocations in amethyst crystals by hydrothermal etching. Amer. Mineral. 63, 744-746.
Komatsu H. and Inoue T. (1984) Characterization of olivine crystals. In Materials Science of the Earth’s Interior (ed. I. Sunagawa), Terra Sci. Publ., Tokyo, pp. 149-169.
Kröger F. A. (1973) The chemistry of imperfect crystals. 2nd edition, North-Holland Publ. Comp., Amsterdam.
Lasaga A. C. and Blum A. E. (1986) Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50, 2363-2379.
Lee W. H. and Shen P. (2004) Co3-δO4 paracrystal: 3-D assembly of nano-size defect clusters in spinel lattice. J. Solid State Chem., 177, 101-108.
Liang D. T. and Readey D. W. (1987) Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures. J. Amer. Ceramic. Soc. 70, 570-577.
Lin C.C. and Shen P. (1993a) Directional dissolution kinetics of willemite. Geochim. Cosmochim. Acta 57, 27-35.
Lin C.C. and Shen P. (1993b) Role of screw axes in dissolution of willemite. Geochim. Cosmochim. Acta 57, 1649-1655.
Lin C.C. and Shen P. (1995) Incubation time of etch pits at dislocation outcrops. Geochim. Cosmochim. Acta 59, 2955-2963.
Nowotny J. and Rekas M. (1989) Defect structure of cobalt monoxide: I, The ideal defect model. J. Am. Ceram. Soc. 72, 1199-1207.
Nowotny J., Weppner W. and Sloma M. (1989) Near-surface defect structure of CoO in the vicinity of the CoO/Co3O4 phase boundary. In Non-Stoichiometric Compounds Surfaces, Grain Boundaries and Structure Defects. (Nowotny J. and Weppner W. eds), Kluwer Academic Publishers, Dordrecht, pp. 265-277.
Oku M. and Sato Y. (1992) In-situ X-ray photoelection spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10-3 Pa. Appl. Surf. Sci. 55, 37-41.
Pfeiffer T., Schmalzried H. and Martin M. (1984) On the morphological changes on CoO-surfaces during vacancy relaxation process. Scripa Metallurgica 18, 383-386.
Porter D.A., Easterling K.E.(1992) Phase Transformations in Metals and Alloys. Second Edition, Nelson Thornes, Cheltenham, pp. 201-202.
Robin J. (1955) Ann. Chim. (Paris) (1955) 10, pp. 397.
Rozgonyi G. A.,Mahajan S., Read M. H., and Brasen D. (1976) Sources of oxidation-induced stacking faults in Czochralski silicon wafers. Appl. Phys. Lett. 29, 531-533.
Sangwal K. (1987) Etching of crystals ­ theory, experiment, and application. North ­ Holland, Amsterdam.
Schaarwächter W. (1965a) Zum Mechanism der Versetzungsätzung. I. Die Bildung zweidimensionaler Lochkeime an den Enden von Versetzungslinien. Phys. Stat. Sol. 12, 375-382.
Schaarwächter W. (1965b) Zum Mechanismus der Versetzungsätzung. II. Entstehungsbedingungen für Ätzgruben. Phys. Stat. Sol. 12, 865-876.
Sears G. W. (1960) Dislocation etchings. J. Chem. Phys. 32, 1317-1322.
Tetot R., Nacer B. and Boureau G. (1994) Statistical thermodynamics and defect structure of Co1-δO under usual oxygen partial pressures. A Monte Carlo study. J. Phys. Chem. Solids. 55, 617-624.
Teuber H. and Martin M. (1997) Morphological stability of the phase boundaries of a binary oxide in a simultaneous oxygen potential and temperature gradient. Solid State Ionics 95, 17-22.
Tuck B. (1975) The chemical polishing of semiconductors. J. Mat. Sci. 10, 321-339.
Weyher J. and Van Enckevort W. J. P. (1983) Selective etching and photoetching of {100} gallium arsenide CrO3 –HF aqueous solutions. II. The nature of etch hillocks. J. Cryst. Growth 63, 292-298.
李名言,"NiO•2CoO岩鹽結構固溶燒結體因退火及顆粒大小引起尖晶石化和晶向重調",碩士論文,國立中山大學材料所,中華民國九十年六月
曾婉如,"磷灰石單晶之微觀組織及異向酸性溶解",碩士論文,國立中山大學材料所,中華民國九十二年六月
蔡宗明,"MgO添加Ni1-XO或Co1-XO造成之相變化",碩士論文,國立中山大學材料所,中華民國九十二年六月
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.219.65
論文開放下載的時間是 校外不公開

Your IP address is 18.190.219.65
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code