Responsive image
博碩士論文 etd-0802107-002430 詳細資訊
Title page for etd-0802107-002430
論文名稱
Title
在單一半導體量子點中的多激子行為
Multi-exciton state in single semiconductor quantum dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-14
繳交日期
Date of Submission
2007-08-02
關鍵字
Keywords
多激子、光子反成串、量子侷限效應、單激子
multi-exciton, single exciton, photon anti-bunching, quantum confinement effect
統計
Statistics
本論文已被瀏覽 5626 次,被下載 0
The thesis/dissertation has been browsed 5626 times, has been downloaded 0 times.
中文摘要
單一半導體量子點與塊材半導體最大的不同是它具有優秀量子侷限效應,使的量子點中形成激子具有可隨量子點大小控制的不同能隙,因此具有可控制的吸收及螢光波長。除了單激子外,我們另外可以觀察到單一半導體量子點中的多激子行為表現。本論文中,利用單分子螢光測量來探討單一CdSe/ZnS 半導體量子點形成多激子時與激發光強度相關的程度。
在逐漸遞增的激發光強度下,量子點的螢光生命曲線以及光子反成串行為顯示出會有比較快速的螢光生命曲線,這代表的意義就是來自量子點中多激子的鬆弛行為,並結果顯示出要從激子狀態中產生多激子會有一個能階上的門檻值。在低強度激發光下,可以看到光子反成串行為及近乎單一指數鬆弛的螢光生命曲線,然後當激發光強度提高超越門檻值時,同一顆量子點上會出現額外快速衰減的螢光生命曲線及光子成串行為,明白的指示出多階段的輻射鬆弛過程。
除此之外,我們調變線性偏極化光去激發量子點樣品。結果顯示多激子的emission dipole 與單激子的情況相同,會有一個對稱c 軸的二維 transition dipole bright plane。然而在absorption dipole 方面,多激子則具有與單激子不同的激發電場偏振的關聯。
Abstract
The major difference between semiconductor quantum dots and bulk semiconductors is in the quantum confinement effect. It results the controllable exciton’s absorption and emission spectra by tuning the size of the quantum dot. Moreover, multi-exciton states are reported to be observed in the highly symmetric quantum dot systems. In this dissertation, we use the single molecule fluorescence measurement to study the power dependence of multi-exciton state in single CdSe/ZnS semiconductor quantum dots.
At low excitation fluence, anti-bunching behavior, and nearly single exponential relaxation dynamics are observed. By increasing the laser power, bi-exponential fluorescence decay dynamics as well as bunching behaviors from the same QD indicate the fast PL dynamics due to the relaxation from multi-exciton. The results indicate certain threshold
energy level for multi-exciton generation. In addition, the multiple step cascade radiative relaxation processes are observed.
Besides, we modulate linear polarization light to study the excitation orientation dependence. The results indicate the emission dipole of multi-exciton is similar to the single exciton, having a two dimensional
transition dipole plane with c-axis symmetry. However, the absorption dipole of multi-exciton exhibits different orientation dependence from the single exciton.
目次 Table of Contents
總目錄
中文摘要
英文摘要
致謝
總目錄
圖目錄
表目錄
符號表
第一章 緒論.............................................................................................1
第二章 太陽能電池的效率提升.............................................................4
2-1 節 太陽能電池的發展..............................................................4
2-2 節 熱力學理論下太陽能電池的終極效率..............................5
2-3 節 單一接面太陽能電池裡的損失..........................................7
2-4 節 第三代太陽能電池.............................................................9
2-5 節 Tandem solar-cell.................................................................11
2-6 節 Hot carrier solar-cell............................................................14
2-7 節 一個光子產生多電子與電洞對.........................................15
第三章 多激子的螢光量測……………………………………………24
3-1 節 半導體…………………………………………………….24
V
3-2 節 量子點簡介.........................................................................27
3-2.1 節 量子點.......................................................................27
3-2.2 節 量子點的特性及應用................................................29
3-3 節 半導體量子點.....................................................................33
3-4 節 激子.....................................................................................34
3-4.1 節 激子的種類.................................................................34
3-4.2 節 自由激子的鍵結能及半徑..........................................36
3-4.3 節 高密度下的自由激子..................................................39
3-5 節 半導體量子點中的多激子...................................................41
3-5.1 節 多激子產生的機制......................................................42
3-5.2 節 單一量子點中的多激子鬆弛機制.............................50
第四章 螢光原理和實驗架構、樣品.....................................................53
4-1 節 螢光簡介...............................................................................53
4-1.1 節 螢光的機制..................................................................53
4-1.2 節 螢光量子效率 ( Fluorescence Quantum Yield )........57
4-1.3 節 螢光非等向性 ( Fluorescence Anisotropy ) ..............58
4-1.4 節 螢光生命期 (Fluorescence Decay Lifetime ) ...........58
4-2 節 單分子螢光量測方式.........................................................59
VI
4-3 節 實驗架構............................................................................61
4-4節 實驗樣品.............................................................................63
4-5節 半導體量子點的光物理特性.............................................64
第五章 實驗方法及步驟.......................................................................68
5-1 節 樣品準備..............................................................................68
5-2 節 實驗步驟..............................................................................69
第六章 實驗結果與討論.......................................................................77
6-1單一量子點的螢光量測結果.....................................................77
6-2 單一量子點與激發光功率的相關行為....................................79
6-3 多激子的螢光生命期................................................................81
6-4 多激子的光物理特性.................................................................86
第七章 結論與未來展望........................................................................94
參考文獻 References
[1]蔡進,”超高效率太陽能電池-從愛因斯坦的光電效應談”物理雙月刊,二十七(2005)
[2] Martin A. Green”Third Generation Photovolatics:Ultra-high Conversion Efficiency at Low Cost” Prog. Photovolt: Res. Appl.9,123-135(2001)
[3]光電元件導論,劉博文編著,全威, 民94(2005)
[4]半導體元件物理與製作技術,施敏原著,黃調元譯,國立交通大學出版社,民91(2002)
[5] Hahn-Meitner Institute (HMI) Http://www.hmi.de/bereiche/SE/SE2/arbeitsg/index_en.html
[6] Richard D. Schaller, Milan Sykora, Jeffrey M. Pietryga, and Victor I. Klimov*.
“Seven Excitons at a Cost of One:Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers.” Nano Letters 6,424-429(2006)
[7]Victor I. Klimov* ”Mechanismsfor Photogeneration and Recombination of multiexciton in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion” J.Phys. Chem. B 110,16827-16845(2006)
[8]奈米科技導論,羅吉宗等編著,全華,民92 (2003)
[9]實用奈米技術,劉陵崗等合著,張安華主編,新文京開發,民94 (2005)
[10]Imperial College Lonfon,Facutly of Science:Department of Physics
http://www.imperial.ac.uk/research/exss/research/semiconductor/qd/
[11]Bernard Valeur. Molecular Fluorescence Principle and Applications.
Wiley-VCH Verlag GmbH (2001)
[12]Chem Tech http://www.chemtech.com.tw/Column.php?mode=detail&id=47
[13] Mark Fox. Optical Properties of Solids. Oxford University Press Inc.,New York (2001)
[14]Randy J. Ellingson, Matthew C. Beard*, Justin C. Johnson , Pingrong Yu, Olga I. Micic AJN, Andrew Shabaev and Alexander L. Efros*. “Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots.” Nano Letters 5,865-871(2005).
[15]E. Moreau IR, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram. “Quantum
Cascade of Photons in Semiconductor Quantum Dots.” Physical Review Letters
87,183601(2001)
[16]M. Achermann, J.A. Hollingsworth,andV. I. Klimov. “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals.” Physical Review B 68, 245302(2003)
[17]Philippe Guyot-Sionnest “A new quantum state ? ” Nature Materials 4,653-654(2005)
[18]Oliver Benson CS, Matthew Pelton, and Yoshihisa Yamamoto* “Regulated and
Entangled Photons from a Single Quantum Dot.” Physical Review Letters 84 ,2513(2000)
[19]V. I. Klimov* A.A. Mikhailovsky, D.W. McBranch,C. A. Leatherdale,
M.G.Bawendi. “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots.” Science 28,1011-1013(2000)
[20]V.A.Kharchenko*, M. Rosen. “Auger relaxation process in semiconductor
nanocrystals and quantum wells.” Journal of Luminescence 70,158-169(1996)
[21]V. I. Klimov, A.A.Mikhailovsky, D.W. McBranch, C. A. Leatherdale,
M.G.Bawendi. “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots.” Science 287,1011-1013(2000)
[22]A.J. Nozik* “Quantum dot solar cells.” Physica E 14,115-120(2002)
[23]Molecular Expressions http://www.micro.magnet.fsu.edu
[24]W. Becker, Advanced time-correlated single-photon counting techniques.
Springern, Berlin,Helidelberg, New York(2005)
[25]D.V. O’Connor, D.Phillips,Time-correlated single photon counting. Academic Press,London(1984)
[26]J.Yguerabide.“Nanosecond fluorescence spectrosopy of Macromolecules”
Meth.Enzymol.26,498-578(1972)
[27]Wolfgang Becker “The bh TCSPC Handbook” Becker& Hic(2005)
[28]Molecular Expressions http://www.micro.olympusmicro.com/
[29]Olympus Microscopy Resource Center http://www.olympusmicro.com/
[30]Evident Technologies, Inc http://www.evidenttech.com
[31] A. R Kortan, R.Hull, R. L.Opila, M. G.Bawendi, M. L. Steigerwald, P. J.
Carroll and L. E. Brus, “Nucleation and Growth of CdSe on ZnS Quantum
Cryastallite Seeds, and Vice Versa , in Inverse Micelle Media” J. Am. Chem.
Soc. 112, 1327-1332(1990).
[32]陳立俊,微電子材料與製程,中國材料科學學會,民89(2000)
http://pilot.mse.nthu.edu.tw/microl
[33]The University of Alabama Department of Chemistry Graduate Student
Seminar Series Literature Seminar by Andrei Honciuc
[34] Jerzy Sepiot, Jan Jasny , JiJrg Keller, Urs P. Wild “Single molecules observed
by Immersion mirror objective.The orientation of terrylene molecules via the
direction of its transition dipole moment” Chemical Physics Letters
273,444-448 (1997)
[35] Felix Koberling, Ute Kolb, Gunther Philipp, Inga Potapova, Thomas
Basche, and Alf Mews “Fluorescence Anistropy and Crystal Structure of
Indivisual Semiconductor Nanocrystals” J. Phys. Chem. B 107, 7463- 7471(2003)
[36] Kenneth D. Weston, Martina Dyck, Philip Tinnefeld, Christian Muller, Dirk P. Herten, and Markus Sauer* “Measuring the Number of Independent Emitters in Single-Molecule Fluorescence Images and trajectories Using Coincident Photons “Anal.Chem.74, 5342-5349(2002)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.205.146
論文開放下載的時間是 校外不公開

Your IP address is 3.135.205.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code