Responsive image
博碩士論文 etd-0802107-145331 詳細資訊
Title page for etd-0802107-145331
論文名稱
Title
藉由MAC層允許控制以增進IEEE 802.11e之效能
Improving System Performance in IEEE 802.11e WLANs With MAC Layer Admission Control
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-03
繳交日期
Date of Submission
2007-08-02
關鍵字
Keywords
競爭存取模式、無線區域網路
contention period, WLAN
統計
Statistics
本論文已被瀏覽 5619 次,被下載 0
The thesis/dissertation has been browsed 5619 times, has been downloaded 0 times.
中文摘要
在此篇論文中為了要增進IEEE 802.11e無線區域網路的效能,藉由擁塞避免(congestion avoidance)的觀念,我們提出一個簡單的MAC層允許控制機制SCAS(Self-Conscious Congestion Avoidance Scheme)。在競爭存取模式下高頻道負載時,依網路狀態適當地暫時停止某些工作站競爭頻道,藉以降低競爭存取模式中碰撞發生的機率。SCAS建構在競爭存取模式下的頻道擷取方法上,因此不但能夠適用在原本IEEE 802.11e頻道擷取方法(EDCA[2])上也能夠適用在其它頻道擷取方法(AEDCF[12])上。此外SCAS採用分散式的方式由各個工作站獨自的運作,不需透過基地台AP(Access Point)或上層來運作。
最後經由模擬分析來驗證我們所提出的機制(SCAS)在競爭存取模式下不同頻道擷取方法(EDCA與AEDCF)上其效能改善之程度。模擬結果顯示SCAS機制除了能夠有效地降低EDCA與AEDCF碰撞發生的次數外,對於訊框平均的延遲時間(mean delay time)與系統的產能(throughput)也都能夠獲得不錯的效益,特別是當競爭頻道的工作站增加時,其效益更加顯著。
Abstract
In this paper in order to improve the performance of the IEEE 802.11e WLAN (Wireless Local Area Network), we propose a simple MAC layer access control mechanism SCAS (Self-Conscious Congestion Avoidance Scheme). During the contention period, if the traffic load is high, we adaptively temporary stop some STAs (stations) contending for the channel to reduce the collision rate according to the network conditions. SCAS is on the MAC layer. Hence, it can not only be applied to the IEEE 802.11e medium access method (EDCA [2]) but also be applied to AEDCF [12]. Besides, each STA can operate SCAS by itself not through AP (Access Point) or higher layer.
Finally we evaluate the performance of SCAS on EDCA and AEDCF through simulations. Results show that SCAS can not only reduce collision rate of EDCA and AEDCF efficiently but also improve mean delay time and system throughput especially in high traffic load conditions.
目次 Table of Contents
目錄............. I
圖目錄......... III
表目錄......... V
第一章 導論............. 1
1.1 前言............. 1
1.2 研究動機..... 3
1.3 論文架構..... 5
第二章 相關背景與研究.............. 6
2.1 IEEE 802.11 WLAN基礎知識............ 6
2.1.1 IEEE 802.11 WLAN相關名詞介紹.. 6
2.1.2 IEEE 802.11 WLAN基本架構.......... 8
2.2 IEEE 802.11 WLAN MAC................... 10
2.2.1 分散式協調功能(DCF)...................... 11
2.2.2 集中式式協調功能(PCF)................... 16
2.2.3 對QoS支援的改進與研究................. 19
2.3 IEEE 802.11e WLAN基礎知識.......... 24
2.3.1 IEEE 802.11e WLAN相關名詞介紹 ..24
2.4 IEEE 802.11e WLAN MAC................. 28
2.4.1 競爭式存取EDCA.............................. 29
2.4.2 免競爭式/中控式存取HCCA............. 35
2.4.3 對服務品質支援的改進與研究......... 39
第三章 以MAC層允許控制增進IEEE 802.11e競爭存取模式下之效能................................................................. 44
3.1 所需準備與參數設定....................................... 46
3.2 SCAS—優先權較高的資料流(具時效性)...... 52
3.3 SCAS—優先權較低的資料流(不具時效性).. 54
第四章 模擬環境與結果.............. .....................58
4.1 模擬環境與參數................................... 58
4.2 模擬結果..... ...........................................60
第五章 結論............. ...........................................68
參考文獻 69
參考文獻 References
[1] IEEE 802.11 WG, “International Standard for Information technology — Local and Metropolitan Area Networks - Specific Requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” 1999.
[2] IEEE 802.11 WG, “IEEE Standard for Information technology — Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN MAC and PHY specifications Amendment 8: MAC Quality of Service Enhancements,” 2005.
[3] A. Khalaj, N. Yazdani, and M. Rahgozar, “Service differentiation and fairness in IEEE 802.11 DCF,” IEEE International Conference on Networks, Volume 1, 16-18 Nov. 2005.
[4] Nakjung Choi, Yongho Seok, Yanghee Choi, Sungmann Kim, and Hanwook Jung, “P-DCF: enhanced backoff scheme for the IEEE 802.11 DCF,” IEEE Vehicular Technology Conference, Volume 3, pp. 2067 – 2070, June 2005.
[5] B.N. Bhandari, R.V.R. Kumar, and S.L. Maskara, “A modified back-off algorithm for the IEEE 802.11 DCF,” IEEE International Conference on Networks, Volume 1, pp. Z000836 - Z00089E, Nov. 2005.
[6] N.I. Sarkar and K.W. Sowerby, “Buffer unit multiple access (BUMA) protocol: an enhancement to IEEE 802.11b DCF,” IEEE Global Telecommunications Conference, Volume 5, 28 Nov-2 Dec. 2005.
[7] Noun Choi, S. Venkatesan, and R. Prakash, “A QoS-aware MAC layer protocol for wireless LANs,” IEEE International Conference on Performance, Computing, and Communications, pp. 571-577, 2004.
[8] L. Zhang and S. Zeadally, “HARMONICA: enhanced QoS support with admission control for IEEE 802.11 contention-based access,” IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 64-71, May 2004.
[9] Zi-Tsan Chou and Shih-Lin Wu, “A new QoS point coordination function for multimedia wireless LANs,” International Conference on Distributed Computing Systems, pp. 40–47, 2004.
[10] Shou-Chih Lo and Wen-Tsuen Chen, “An efficient scheduling mechanism for IEEE 802.11e MAC enhancements,” IEEE Wireless Communications and Networking Conference, Volume 2, pp. 777–782, March 2004.
[11] J.N. Al-Karaki and J.M. Chang, “A simple distributed access control scheme for supporting QoS in IEEE 802.11 wireless LANs,” IEEE Wireless Communications and Networking Conference, Volume 1, pp. 213–218, March 2004.
[12] L. Romdhani, Qiang Ni, and T. Turletti, “Adaptive EDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-hoc Networks,” IEEE Wireless Communications and Networking Conference, Volume 2, pp. 16-20, March 2003.
[13] L. Gannoune, S. Robert, N. Tomar, and T. Agarwal, “Dynamic tuning of the maximum contention window (CWmax) for enhanced service differentiation in IEEE 802.11 wireless ad-hoc networks,” IEEE Vehicular Technology Conference, Volume 4, pp. 2956-2961, Sept. 2004.
[14] Xin Wang, Qianli Zhang, and Xing Li, “Protocol enhancement for IEEE 802.11e EDCF,” IEEE International Conference on Networks, Volume 1, pp. 80-84, Nov. 2004.
[15] G.W. Wong and R.W. Donaldson, “Improving the QoS performance of EDCF in IEEE 802.11e wireless LANs,” IEEE Pacific Rim Conference on Communications, Computers and signal Processing, Volume 1, pp. 392-396, Aug. 2003.
[16] J. Naoum-Sawaya, B. Ghaddar, S. Khawam, H. Safa, H. Artail, and Z. Dawy, “Adaptive approach for QoS support in IEEE 802.11e wireless LAN,” IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, Volume 2, pp. 167-173, Aug. 2005.
[17] S. Takeuchi, K. Sezaki, and Y. Yasuda, “Dynamic Adaptation of Contention Window Sizes in IEEE 802.11e Wireless LAN,” IEEE International Conference on Information, Communications and Signal Processing, pp. 659-663, Dec. 2005.
[18] J.W. Robinson, and T.S. Randhawa, “Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function,” IEEE Journal on Selected Areas in Communications, Volume 22, Issue 5, pp. 917-928, June 2004.
[19] A. Nafaa, A. Ksentini, A. Mehaoua, B. lshibashi, Y. Iraqi, and R. Boutaba, “Sliding contention window (SCW): towards backoff range-based service differentiation over IEEE 802.11 wireless LAN networks,” IEEE Network, Volume 19, pp. 45-51, July-Aug. 2005.
[20] S. Vinnakote, S.V.S. Naresh, S. Pasupuleti, and D. Das, “New-MAC protocol for enhancement of QoS performance in wireless LAN,” IEEE International Conference on Wireless and Optical Communications Networks, 11-13 April 2006.
[21] M. Frikha, Fatma Ben Said, L. Maalej, and F. Tabbana, “Enhancing IEEE 802.11e standard in congested environments,” Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services, 19-25 Feb. 2006.
[22] Hwi-Jin Ye, Moon Kim, Il-Young Moon, and Sung-Joon Cho, “A study of QoS-aware MAC protocol with network adaptation,” International Conference on Advanced Communication Technology, Volume 1, 20-22 Feb. 2006.
[23] L. Gannoune, “A Comparative Study of Dynamic Adaptation Algorithms for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad Hoc Networks,” Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services, 19-25 Feb. 2006.
[24] Yang Xiao and Haizhon Li, “Local data control and admission control for QoS support in wireless ad hoc networks,” IEEE Transactions on Vehicular Technology, Volume 53, pp. 1558–1572, Sept. 2004.
[25] Zhifeng Tao and S. Panwar, “Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access ,” IEEE Transactions on Communications, Volume 54, Issue 4, pp. 596-603, April 2006.
[26] L.W. Lim, R. Malik, P.Y. Tan, C. Apichaichalermwongse, K. Ando, and Y. Harada, “A QoS scheduler for IEEE 802.11e WLANs,” IEEE Consumer Communications and Networking Conference, pp. 199-204, Jan. 2004.
[27] Pierre Ansel, Qiang Ni, and Turletti. Thierry, “FHCF: An Efficient Scheduling Scheme for IEEE 802.11e,” Accepted to appear in ACM/Kluwer Journal on Mobile Networks and Applications (MONET), Special Issue on Modeling and Optimization in Wireless and Mobile Networks, 2005.
[28] A. Annese, G. Boggia, P. Camarda, L.A. Grieco, and S. Mascolo, “Providing delay guarantees in IEEE 802.11e networks,” IEEE Vehicular Technology Conference, Volume 4, pp. 2234-2238, May 2004.
[29] Yang Xiao, “IEEE 802.11e: QoS provisioning at the MAC layer,” IEEE Wireless Communications, Volume 11, Issue 3, pp. 72-79, June 2004.
[30] Qiang Ni, “Performance analysis and enhancements for IEEE 802.11e wireless networks,” IEEE Network, Volume 19, Issue 4, pp. 21-27, July-Aug. 2005.
[31] X. Chen, H. Zhai, X. Tian, and Y. Fang, “Supporting QoS in IEEE 802.11e wireless LANs,” IEEE Transactions on Wireless Communications, Volume 5, Issue 8, pp. 2217-2227, Aug. 2006.
[32] N. Ramos, D. Panigrahi, and S. Dey, “Quality of service provisioning in 802.11e networks: challenges, approaches, and future directions,” IEEE Network, Volume 19, Issue 4, pp. 14-20, July-Aug. 2005.
[33] The Network Simulator – ns-2. http://www.isi.edu/nsnam/ns/.
[34] An IEEE 802.11e EDCA and CFB Simulation Model for ns-2. http://www.tkn.tu-berlin.de/research/802.11e_ns2/.
[35] T.J. Kostas, M.S. Borella, I. Sidhu, G.M. Schuster, J. Grabiec, and J. Mahler, “Real-time voice over packet-switched networks,” IEEE Network, Volume 12, Issue 1, pp. 18-27, Jan.-Feb. 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.156.250
論文開放下載的時間是 校外不公開

Your IP address is 3.145.156.250
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code