Responsive image
博碩士論文 etd-0802107-170954 詳細資訊
Title page for etd-0802107-170954
論文名稱
Title
新型塑膠透鏡光纖成型技術
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-19
繳交日期
Date of Submission
2007-08-02
關鍵字
Keywords
塑膠、光纖、透鏡
plastic, lens, fiber
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
在本論文中描述一種新型的塑膠透鏡光纖成型技術,其優點是製造快速、可一次大量製作,並且增加耦合率。此塑膠透鏡光纖的製作方式是先利用文獻所使用的點膠方式在平頭光纖頭端點膠,膠體會因為表面張力自然形成球面透鏡,之後再利用高電壓產生靜電吸引的方式將球面透鏡拉伸成錐狀後固化而成錐狀透鏡。利用點膠的方式製作透鏡有一些限制,包括點膠量控制、固化收縮率及透鏡形狀等。因此在本論文中,將改善點膠製作透鏡的限制,使點膠製作透鏡的方式能製作更高耦合率透鏡。
Abstract
A novel method to form plastic lensed fiber that could be used to manufacture in bulk quickly and raise the coupling efficiency is proposed. The way to form plastic lensed fiber is droping the mucilage on the fiber endface which is described in the reference, then the mucilage will be formed ball lens with surface tension. Next step is to force the ball lens to hyperbola shape with electric force.
The method contains some restrictions including controlling the volume of the drop, the shrinking rate after curing, and the shape of the fabricated lens. The way improving the restriction of fabrication to achieve high coupling efficiency is described in this paper.
目次 Table of Contents
目錄
謝誌.....................................................1
目錄.....................................................2
圖目錄.................................................5
表目錄.................................................8
緒論.....................................................9
摘要...................................................12
第一章 介紹 .............................14
1-1光纖介紹.....................................14
1-2透鏡光纖結構..............................16
1-3研究動機......................................18
1-4研究目的......................................19
第二章 文獻回顧.......................20
2-1張力成型製作微透鏡...................21
2-1-1LIGA製程製作微透鏡...........21
2-1-2微粒滴法製作微透鏡............21
2-1-3電濕潤法製作微透鏡............22
2-2非張力成型製作微透鏡................23
2-2-1雷射加工法製作微透鏡........23
2-2-3電吸引法製作微透鏡.............24
2-3外加鏡組式耦光技術....................26
2-3-1單鏡片光纖耦光技術.............26
2-3-2鏡片組光纖耦光技術.............26
2-4透鏡光纖式耦光技術.....................27
2-4-1研磨法製作透鏡光纖..............27
2-4-2熔燒法製作透鏡光纖..............28
2-4-3點膠法製作透鏡光纖..............28
第三章 研究方法與分析..............31
3-1研究架構..........................................31
3-2透鏡材料分析.................................32
3-3光學分析..........................................37
3-3-1目標透鏡外形分析....................37
3-3-2ZEMAX光學模擬.......................42
3-4點膠體積分析..................................44
3-5電場與透鏡外形分析......................46
第四章 實驗與結果.......................49
4-1實驗架構..........................................49
4-2實驗流程..........................................50
4-2-1收縮率量測..................................50
4-2-2電場與透鏡外形關係...................51
4-2-3透鏡光纖耦光性能量測...............54
第五章 結論與未來發展...............58
5-1結論...................................................58
5-2未來發展方向...................................58
Reference..............................................59
參考文獻 References
[1] H. S. Lee, S. K. Lee, T. H. Kwon, and S. S. Lee, "Microlenses array fabrication by hot embossing process " Optical MEMs,Conference Digest. 2002 IEEE/LEOS International Conference on, pp. 73~74, 2002.
[2] S. K. Lee, K. C. Lee, and S. S. Lee, "Microlens Fabrication by the Modified LIGA Process," Micro Electro Mechanical Systems, The Fifteenth IEEE International Conference on, pp. 520~523, 2002.
[3] H. Choo, R. S. Muller, B. Sensor, and A. Center, "Optical properties of microlenses fabricated by using hydrophobic effects and polymer-jet-printing technology," Optical MEMS, IEEE/LEOS International Conference on, pp. 169~170, 2003.
[4] E. H. Park, M. J. Kim, and Y. S. Kwon, "New Fabrication Technology of Convex and Concave Microlens Using UV Curing Method," Lasers and Electro-Optics Society 1999 12th Annual Meeting., vol. 2, pp. 639~640, 1999.
[5] J. H. Chen, C. A. Chen, and W. H. Hsieh, "Electrowetting Technique for Lens Fabrication," Mechatronics, ICM '05. IEEE International Conference on, pp. 768~770, 2005.
[6] W. H. Hsieh and J. H. Chen, "Lens Profile Control by Electrowetting Fabrication Technique," Photonics Technology Letters, IEEE, vol. 17, pp. 606~608, 2005.
[7] Y. C. Lee, C. Y. Wu, L. S. Jang, and Y. C. Hsu, "Fabrication and characterization of 3D Aspheric Microlenses With Arbitrary Surface Profiles Based On a Novel Excimer Laser Contour Scanning Method," Solid-State Sensors, Actuators and Microsystems,Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, vol. 2, pp. 1375~1379, 2005.
[8] K. Naessens, P. V. Daele, and R. Baets, "Excimer Laser Ablation Based Microlens Fabrication in Polymer Materials," Lasers and Electro-Optics Society,LEOS 2002. The 15th Annual Meeting of the IEEE, vol. 2, pp. 655~656, 2002.
[9] C. W. Chen and F. G. Tseng, "Tunable Micro-Aspherical Lens Manipulated by 2D Electrostatic Forces," Solid-State Sensors, Actuators and Microsystems,Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, vol. 1, pp. 376~379, 2005.
[10] J. Zeng, D. Sobek, and T. Korsmeyer, "Electro-Hydrodynamic Modeling of Electrospray Ionization:CAD for μFluidic Device-Mass Spectrometer Interface," TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, vol. 2, pp. 1275~1278, 2003.
[11] K. Kato, I. Nishi, K. Yoshino, and H. Hanafusa, "Optical Coupling Characteristics of Laser Diodes to Thermally Diffused Expanded Core Fiber Coupling Using a Aspheric Lens," Photonics Technology Letters, IEEE, vol. 3, pp. 469~470, 1991.
[12] Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. M. L. J. Missaggia, and W. F. Dinatale, "Fabrication of Two-Sided Anamorphic Microlenses and Direct Coupling of Tapered High-Power Diode Laser to Single-Mode Fiber," Photonics Technology Letters, IEEE, vol. 7, pp. 1315~1317, 1995.
[13] M. Sumida and K. Takemoto, "Lens Coupling of Laser Diodes to Single-Mode Fibers," Journal of Lightwave Technology, vol. 2, pp. 305~311, 1984.
[14] M. He, J. Bu, B. H. Ong, and X. Yuan, "Two-Microlens Coupling Scheme With Revolved Hyperboloid Sol-Gel Microlens Arrays for High-Power-Efficiency Optical Coupling," Journal of Lightwave Technology, vol. 24, 2006.
[15] K. Kawano, O. Mitomi, and M. Saruwatari, "Laser Diode Module for Single-Mode Fiber Based on New Confocal Combination Lens Method," Journal of Lightwave Technology, vol. 4, pp. 1407~1413, 1986.
[16] K. Kawano, M. Saruwatari, and O. Mitimi, "A New Confocal Combination Lens Method for a Laser-Diode Module Using a Single-Mode Fiber," Journal of Lightwave Technology, vol. 3, pp. 739~745, 1985.
[17] H. Yoda, T. Sakurai, A. Ogura, and K. Shiraishi, "A wedge-shaped GIF for coupling between an SMF and a high-power LD having ultra-high aspect ratio," Proc. 27th Eur. Conf. on Opt. Comm. (ECOC'01 - Amsterdam), vol. 3, pp. 418 - 419, Oct. 2001.
[18] H. Yoda, T. Endo, and K. Shiraishi, "Cascaded GI-fiber chips with a wedge-shaped end for the coupling between an SMF and a high-power LD with large astigmatism," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 20, pp. 1545 - 1548, Aug. 2002.
[19] G.-D. Khoe and H. G. Kock, "Laser-to-monomode-fiber coupling and encapsulation in a modified TO-5 package," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, pp. 2707 - 2712, Dec 1985.
[20] K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, "A lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 15, pp. 356 - 363, Feb. 1997.
[21] W. T. Chen and L. A. Wang, "Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, pp. 501 - 503, May 2000.
[22] J. Yamada, Y. Murakami, J. Sakai, and T. Kimura, "Characteristics of a hemispherical microlens for coupling between a semiconductor laser and single-mode fiber," IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 16, pp. 1067 - 1072, Oct 1980.
[23]J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, "Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, pp. 2499 - 2501, Nov. 2004.
[24]K.-W. Jo, M.-S. Kim, J. H. Lee, E.-K. Kim, and K.-H. Park, "Optical characteristics of a self-aligned microlens fabricated on the sidewall of a 45spl deg-angled optical fiber," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, pp. 138 - 140, Jan. 2004.
[25]K.-R. Kim, S. Chang, and K. Oh, "Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 15, pp. 1100 - 1102, Aug. 2003.
[26]K. R. Kim, K. Oh, and S. Chang, "Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension induced self-assembly," Optical Society Of America, pp. 2, June 2003.
[27]C.-C. Yang, T.-C. Peng, Y.-H. Huang, M.-C. Wu, C.-L. Ho, and W.-J. Ho, "A simple and low-cost fabrication of polymeric vertical microlens using dip method," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, pp. 603 - 605, Mar 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.199.138
論文開放下載的時間是 校外不公開

Your IP address is 3.142.199.138
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code