Responsive image
博碩士論文 etd-0802110-142406 詳細資訊
Title page for etd-0802110-142406
論文名稱
Title
以表面結構改進氮化鎵發光二極體之光取出
Surface Architectures on Gallium Nitride Light Emitting Diodes for Light Extraction Improvement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-08-02
關鍵字
Keywords
氧化鋅奈米針、光取出效率、氮化鎵發光二極體
GaN LED, ZnO nanotip, light extraction efficiency
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
近年來,雖然氮化鎵發光二極體的發光效率隨著磊晶及製程技術的發展而持續增加,但若與傳統照明系統比較可知,其發光強度和效率仍低了許多。在此研究中,我們利用水溶液沉積法製備氧化鋅奈米針且利用其折射率漸變的特性,以提高氮化鎵發光二極體之光取出效率。研究結果發現,氧化鋅奈米針經過熱處理過後可降低其氧化鋅缺陷,可增加其光取出。除了改善氧化鋅奈米針品質外,覆晶式發光二極體比傳統的發光二極體在垂直發射區(0角度)具有更高的光取出效率(1.25倍)。可得知若減少金屬的光吸收和菲涅耳的傳輸損耗即可增加二極體之發光強度。最後,依照上述之強調設計,我們製作一個高亮度發光二極體。其發光強度較傳統發光二極體提高了約 1.38倍。因此,我們可以製造一個發光二極體陣列與上述設計,以獲得較高的光輸出為未來的固態照明。
Abstract
In recent years, even though the light output of GaN-related LED continues to increase, the brightness is still low compared to conventional lighting systems and it is necessary to further improve the light extraction of LEDs.
In this study, we utilize the ZnO nanotip with aqueous solution and flip-chip
technique to increase the light extraction of GaN LEDs. Electroluminescence (EL) and angular optical distribution are used to measure the light output intensity of LED.
In the results, ZnO nanotip after thermal annealing with N2O ambiance decrease the ZnO defects. Flip-chip LED has higher light intensity ( 1.25 times) than conventional one in vertical emitting area ( at 0 angles). The enhancement of light output is duo to the reduction of light absorption from the metal contact and Fresnel’s transmission losses.
Finally, we fabricate a high brightness LED with above light enhancement design. EL intensity of LED is increased about 1.38 times than conventional one. Therefore, we can manufacture a LEDs array with above designs to obtain high light output for future solid-state illumination.
目次 Table of Contents
Chapter 1 1
Introduction 1
1.1 Evolution and Applications of Light Emitting Diodes 1
1.1.1 Evolution of Light Emitting Diodes 2
1.1.2 Prospects of White LEDs Lighting 2
1.2 Structure and Problems of GaN-based Light Emitting Diodes 3
1.2.1 Structure of GaN-based Light Emitting Diodes 4
1.2.2 Problems of GaN-based Light Emitting Diodes 5
1.3 Motivations of ZnO on GaN blue LED 6
1.4 Synthesis of ZnO nanotip 7
1.5 Advantages of aqueous solution Deposition (ASD) 8
1.6 Enhancement of Light Extraction of GaN Light Emitting Diodes 9
1.7 Flip-Chip Technology 9
Reference 16
Chapter 2 20
Experiments 20
2.1 GaN Blue LED 20
2.2 ZnO buffer layer prepared by RF Sputtering 20
2.2.1 Sputtering mechanism 20
2.2.2 RF Sputtering 22
2.3 ZnO buffer layer prepared with ZnO Target by RF Sputtering 22
2.4 ASD System 23
2.5 ASD Processes 23
2.5.1 Substrate Cleaning Procedures 23
2.5.2 Preparation of Deposition Solution 24
2.5.3 Basic Mechanism for ZnO 24
2.5.4 Upside Down Process 25
2.6 Post-Annealing Treatment 25
2.7 Flip-Chip Technology 25
2.8 Characterization 26
2.8.1 Physical Properties 26
2.8.2 Optical and Electrical Properties 27
References 38
Chapter 3 39
Results and discussion 39
3-1 Characteristics of ZnO nanotip on GaN LED 39
3.1.1 Fresnel’s Loss 39
3.1.2 Buffer layer 40
3.1.3 FE-SEM Morphology 40
3.1.4 Crystal Structure 41
3.1.5 The Optical Properties of ASD-ZnO nanotip 42
3.1.6 Schematic ASD-ZnO nanotip on GaN LED 42
3.1.7 EL Spectrum 42
3.1.8 Angular Optical Distribution 43
3.2 Flip-Chip GaN LED 44
3.2.1 FE-SEM Morphology 44
3.2.2 EL Spectrum 45
3.2.3 Angular Optical Distribution 45
Reference 62
Chapter 4 63
Conclusions 63
參考文獻 References
chapter 1
[1 ]N. Holonyak, Jr., and S.F. Bevacqua, “ Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82-83, 1962.
[2] F.A. Kish, F.M. Steranka, D.C. Defevere, D.A. Vanderwater, K.G. Park, C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, and V. M. Robbins,” Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
[3] S.Nakamura, T. Mukai, and M. Senoh,” Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,”Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, L1332-1335, 1995.
[5] M. Koike, S. Yamasaki, S. Nagai, N. Koide, S. Asami, H. Amano and I. Akasaki,” High-Quality Gainn/GaN Multiple-Quantum Wells,”Appl. Phys. Lett., vol. 68, pp. 1403-1405,1996.
[6] A.Y. Kim, W. Goetz, D.A. Steigerwald, J.J. Wierer, N.F. Gardner, J. Sun, S.A. Stockman, P.S. Martin, M.R. Krames, R.S. Kern, and F. M. Steranka,” Performance of High-Power AlInGaN Light Emitting Diodes,” phys. stat. sol. (a), vol. 188, pp. 15-21, 2001.
[7] C.W. Tang and S. A. VanSlyke,” Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[8] L.S. Hung and C.H. Chen, “ Recent progress of molecular organic electroluminescent materials and devices,” Materials Science and Engineering R-Report, vol. 39, pp 143-222, 2002.
[9] F. M. Steranka, J. Bhat, D Collins and L. Cook et al.,” High Power LED -Technology Status and Market Applications,” Phys. Stat. Sol. (a), vol. 194, pp. 380-388, 2002.
[10] W. Xie, D.C. Grillo, R.L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A.V. Nurmikko, G.C. Hua, N. Otsuka,” Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures,” Appl. Phys. Lett., vol. 60, pp. 1999-2001, 1992.
[11] J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, “ Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, p.539-541, 1990.
[12] A. Mills, “ Trends in HB-LED markets,” III-Vs Review, vol. 14, pp. 38-42, 2001.
[13] B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “ Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells,” Jpn. J. Appl. Phys., vol. 40, L 918-920, 2001.
[14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mukai, Y. Sugimoto, and H. Kiyoku, “ Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 4056-4058, 1996.
[15] T. Tamura, T. Setomoto and Taguchi, “ Fundamental characteristics of the illuminating light source using white LED based on InGaN semiconductors,” Tran. IEE Japan, vol. 120, pp.244-249, 2000.
[16] T. Taguchi, “ Technological innovation of high-brightness light emitting diode (LEDs) and a view of white LED lighting system,” Optronics, vol. 19, pp.120-125, 2000.
[17] T. Nakamura and T. Takebe, “ Development of ZnSe-based white Light emitting diodes,” Optronics, vol. 19, pp.126-131, 2000.
[18] A. Mills,” High-brightness LEDs lighting up the future” III-Vs Review, vol. 14, pp. 32-37, 2001.
[19] T. Komine, M .Nakagawa,” Integrated system of white LED visible-light communication and power-line communication,” IEEE Transactions on Consumer Electronics, vol. 49, pp. 71-79, 2003.
[20] S. Nakamura and G. Fasol, The Blue Laser Diode ( Springer, New York ), 1997.
[21] R. Gaska, M. S. Shur, X. Hu, J. W. Yang, A. Tarakji, G. Simin, A. Khan, J. Deng, T. Werner, S. Rumyantsev, and N. Pala, “ Highly doped thin-channel GaN metal-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 78, pp. 769-771, 2001.
[22] J. Han, J. J. Figiel, G. A. Petersen, S. M. Myers, M. H. Crawford, and M. A. Banas, Jpn. J. Appl. Phys. 39, 2372 (2000).
[23] S. Schad et al.,“Absorption in InGaN-on-Sapphire LED-structures: Comparison between Photocurrent Measurement Method (PMM) and Photothermal Defelection spectroscopy (PDS),” Proc. SPED, (2004).
[24] M. Boroditsky and E. Yablonovitch, Proc. SPIE 3002, 119 (1997).
[25] C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H. W.
Huang, T. C. Lu, and S. C. Wang, IEEE Photonics Technol. Lett. 19,
849 (2007).
[26] C. L. Lee, S. C. Lee, and W. I. Lee, Jpn. J. Appl. Phys. 45, L4
(2006).
[27] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun,
Appl. Phys. Lett. 90, 263511 (2007).
[28] C. L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y.
Chang, and C. Y. .Liu, Appl. Phys. Lett. 90, 242106 (2007).
[29] J. Zhong, H. Chen, G. Saraf, and Y. Lu. APPLIED PHYSICS LETTERS 90, 203515 (2007)
[30] Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
[31] Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
[32] Wei Chen, Xiaoming Tao, Yuyang Liu, Xiaohong Sun, Zhigang Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
[33] Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
[34] Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
[35] Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
[36] Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
[37] Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
[38] Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
[39] Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
[40] Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[41] S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332
[42] Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, Appl. Opt. 26, 1142 (1987).
[43] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
chapter 2
[1] Zhuo Wang, Xue-feng Qian,_ Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
[2] Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
[3] Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[4] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, and P. K. Chu, Jpn. J. Appl. Phys. 36, 661 (1997).
[5] J. Goldstein, D. Newbury, D. joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, scanning electron microscopy and X-ray microanalysis
chapter 3
[1] J. Zhong, H. Chen, G. Saraf, and Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie and H. Shen, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Appl. Phys. Lett. 90, 203515 (2007)
[2] Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186~196
[3] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, and P. K. Chu, Jpn. J. Appl. Phys. 36, 661 (1997).
[4] Matsui H, Saeki H, Kawai T, Tabata H and Mizobuchi B 2004 J. Appl. Phys. 95 5882
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.222.12
論文開放下載的時間是 校外不公開

Your IP address is 18.226.222.12
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code