Responsive image
博碩士論文 etd-0802111-105624 詳細資訊
Title page for etd-0802111-105624
論文名稱
Title
剪切流場中三圓柱各種排列方式之流體引致振動模擬研究
Numerical simulation for flow induced vibration of three circular cylinders with various arrangement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-04
繳交日期
Date of Submission
2011-08-02
關鍵字
Keywords
剪切流、三圓柱、流體-彈性振動、渦流引致振動、間距比
shear flow, fluid elastic vibration, three circular cylinders
統計
Statistics
本論文已被瀏覽 5661 次,被下載 244
The thesis/dissertation has been browsed 5661 times, has been downloaded 244 times.
中文摘要
本文主要利用數值方法探討單一圓柱與三圓柱在剪切流場內的運動模式,觀察圓柱於剪切流內是否具有流體-彈性振動(Fluid-Elastic Vibration),並另外針對不同圓柱間距比、剪切參數以及質量比等參數,對於圓柱運動軌跡與振幅之影響,做詳細的分析。
研究中運用計算流體力學軟體Fluent 6.3.26版本,求解此類問題;以SIMPLEC演算法將連續與動量守恆方程式做交替運算,並與圓柱運動方程式相結合,利用動網格技術,使圓柱體受到流場作用力的影響而產生運動;於不同流場條件下,模擬流場型態和圓柱運動模式,觀察鎖定(Lock-In)現象以及流體-彈性振動對圓柱體的影響。
研究結果顯示,均勻流場中單一圓柱體的流場型態和運動模式與相關文獻互相吻合,而在剪切流場中,隨著剪切參數的增加,圓柱出現流體-彈性振動的情形,使圓柱振幅大幅提升。另外,在剪切流場中雙圓柱體的探討方面,以並列、縱列與交錯的圓柱體排列方式下,調整圓柱間相對距離,均觀察出有流體-彈性振動現象的產生,與單一圓柱體相比較,其發生流體-彈性振動之臨界流速均小於單一圓柱體,代表著雙圓柱體流場較易發生流體-彈性振動。
Abstract
The present study aims to explore dynamical behavior of the fluid- elastic vibration of a single cylinder and three cylinders in shear flow by numerical simulations. This paper investigates the effects of the shear parameter, mass ratio, and spacing(P/D) on fluid-elastic vibration of the cylinders.
Continuity equation and momentum equations are solved alternatively using a CFD package, Fluent 6.3.26. Dynamic meshing techniques together with the cylinder motion equations are employed in the simulation. Under different flow conditions, flow types, and cylinder motion models, lock-in and fluid-elastic vibration are studied.
The results show that motion and flow types of a single cylinder in uniform flow are in agreement with the previous studies in literatures. In shear flow, however, as the shear parameter increases, the fluid-elastic vibration of the cylinder is induced, and thus amplitude of the cylinder increases considerably. Further, three cylinders in the shear flow are studied. Three cylinders arrangements (classified as side-by-side, tandem ,and stagger) and the distance between cylinders are the factors to cause fluid-elastic vibration. Compared with the single cylinder motion, three cylinders motion’s critical flow velocity is smaller than that of the single cylinder motion, which means two cylinders motion are more subject to fluid-elastic vibration.
目次 Table of Contents
中文摘要----------------------------------------------------------------------------I
英文摘要---------------------------------------------------------------------------II
目錄--------------------------------------------------------------------------------III
圖目錄--------------------------------------------------------------------------VIII
表目錄---------------------------------------------------------------------------XX
符號說明-----------------------------------------------------------------------XXI

第一章 緒論-----------------------------------------------------------------------1
1.1 研究動機------------------------------------------------------------1
1.2 文獻回顧------------------------------------------------------------3
1.2.1均勻流場中單一圓柱--------------------------------------3
1.2.2 剪切流場中單一圓柱-------------------------------------4
1.2.3 均勻流場中並列及縱列雙圓柱-------------------------5
1.2.4 均勻流場中交錯排列三圓柱----------------------------7
1.2.5 流體-彈性振動---------------------------------------------8
1.3 研究目的----------------------------------------------------------9
1.4本研究中所使用的無因次參數-----------------------------10

第二章 模擬理論與數值參數設定------------------------------------------12
2.1 理論分析----------------------------------------------------------12
2.1.1 數值方法---------------------------------------------------13
2.1.2 流體統御方程式------------------------------------------13
2.1.3 圓柱運動方程式------------------------------------------14
2.1.4 數值運算流程---------------------------------------------16
2.1.5 PISO演算法-----------------------------------------------19
2.2流場與數值參數設定--------------------------------------------20
2.2.1流場的基本假設與邊界條件設定---------------------20
2.2.2流場計算域(Domain)的設定與測試------------------21
2.2.3流場系統的網格設定與測試---------------------------22
2.2.4時間步階的設定與測試---------------------------------24

第三章 結果與討論------------------------------------------------------------25
3.1 單一圓柱之理論驗證-------------------------------------------25
3.1.1 升力係數與阻力係數變化------------------------------25
3.1.2 史卓荷數變化---------------------------------------------26
3.1.3 流場型態變化---------------------------------------------27
3.2均勻流場中單一彈性圓柱之運動模式探討-----------------28
3.2.1 無因次速度與圓柱振幅變化---------------------------28
3.2.2 無因次速度與頻率比變化------------------------------29
3.2.3 質量比對圓柱振幅之影響------------------------------30
3.2.4 均勻流場中之圓柱運動軌跡變化------------------31
3.3剪切流場中單一彈性圓柱之運動模式探討-----------------32
3.3.1 剪切參數對圓柱振幅之影響---------------------------32
3.3.2 剪切流場中之圓柱運動軌跡變化---------------------34
3.4 均勻流場中彈性雙圓柱之運動模式探討-------------------35
3.4.1 並列固定雙圓柱之流場特性分析---------------------36
3.4.2 並列彈性雙圓柱之運動模式探討---------------------37
3.4.3 縱列固定雙圓柱之流場特性分析---------------------38
3.4.4 縱列彈性雙圓柱之運動模式探討---------------------40
3.5均勻流場中彈性三圓柱直線排列之運動模式探討--------41
3.5.1並列固定三圓柱之流場特性分析 ( θ=90˚)-----------42
3.5.2並列彈性三圓柱之運動模式探討 ( θ=90˚)-----------43
3.5.3縱列固定三圓柱之流場特性分析 ( θ=0˚)------------44
3.5.4縱列彈性三圓柱之運動模式探討 ( θ=0˚)------------45
3.5.5斜直線固定三圓柱之流場特性分析 ( θ=45˚及
θ= -45˚)-----------------------------------------------------46

3.5.6斜直線彈性三圓柱之運動模式探討 ( θ=45˚及
θ= -45˚)---------------------------------------------------47
3.6剪切流場中彈性三圓柱直線排列之運動模式探討--------48
3.6.1剪切參數對並列三圓柱之運動模式的影響
( θ=90˚)-----------------------------------------------------48
3.6.2剪切參數對縱列三圓柱之運動模式的影響( θ=0˚)--49
3.6.3剪切參數對斜直線三圓柱之運動模式的影響
( θ=45˚)-----------------------------------------------------50
3.6.4剪切參數對斜直線三圓柱之運動模式的影響
( θ= -45˚)---------------------------------------------------51
3.7均勻流場中彈性三圓柱交錯排列之運動模式探討--------52
3.7.1交錯排列固定三圓柱之流場特性分析 ( θ=0˚)------53
3.7.2交錯排列固定三圓柱之運動模式探討 ( θ=0˚)------53
3.7.3交錯排列固定三圓柱之流場特性分析 ( θ=180˚)---54
3.7.4交錯排列固定三圓柱之運動模式探討 ( θ=180˚)---55
3.7.5交錯排列固定三圓柱之流場特性分析 ( θ=90˚
與 -90˚)----------------------------------------------------56
3.7.6交錯排列固定三圓柱之運動模式探討 ( θ=90˚
與 -90˚)----------------------------------------------------57
3.8剪切流場中彈性三圓柱直線排列之運動模式探討--------58

3.8.1剪切參數對交錯排列三圓柱之運動模式的影響
( θ= 0˚)----------------------------------------------------58
3.8.2剪切參數對交錯排列三圓柱之運動模式的影響
( θ= 180˚)-------------------------------------------------59
3.8.3剪切參數對交錯排列三圓柱之運動模式的影響
( θ= 90˚)---------------------------------------------------60
3.8.4剪切參數對交錯排列三圓柱之運動模式的影響
( θ= -90˚)--------------------------------------------------61
第四章 結論與建議------------------------------------------------------------62
參考文獻-------------------------------------------------------------------63
參考文獻 References
[1] Feng, C. C., “The Measurement of Vortex-Induced Effects in flow Past Stationary and Oscillating Circular and D-Section Cylinders,” M. A. Sc. Thesis, University of British Columbia, (1968)
[2] Williamson, C. H. K., Roshko, A., “Vortex Formation in the Wake of an Oscillating Cylinder,” Journal of Fluids and Structures, 2, pp.355-381. (1988)
[3] Jordan, S. K., and Fromn, J. E.,“Laminar Flow Past a Circle in a Shear Flow,”The Physics of Fluids, 15, No. 6, pp. 972-976. (1972)
[4] Kiya, M., Tamura, H., Arie, M., “Vortex Shedding from a Circular Cylinder in Moderate-Reynolds Number Shear Flow,”Journal of Fluid Mechanics, 101, pp. 721-735. (1980)
[5] Kwon, T. S., Sung, H. J., Hyun, J. M.,“Experimental Investigation of Uniform-Shear Flow Past a Circular Cylinder,”Journal of Fluid Engineering 114, pp. 457-460. (1992)
[6] Lei, C., Cheng, L., Kavanagh, K., “A Finite Difference Solution of the Shear Flow Over a Circular Cylinder,” Ocean Engineering, 27, pp. 271-290. (2000)
[7] Kang, S., “Uniform-Shear Flow Over a Circular Cylinder at Low
Reynolds Numbers,” Journal of Fluids and Structures, 22, pp. 541-555. (2006)
[8] Zdravkovich, M. M., “Review of Flow Interference between two Circular Cylinders in Various Arrangement,” ASME Journal of Fluids Engineering, 99, pp. 618-633. (1977)
[9] Zdravkovich, M. M., “Flow Induced Oscillations of two Interfering Circular Cylinders.” Journal of Sound and Vibration, 101(4), pp. 511-521. (1985)
[10] Zdravkovich, M. M., “The Effects of Interference between Circular Cylinders in a Cross Flow,” Journal of Fluids and Structures, 1, pp. 239-261. (1987)
[11] Bearmans, P. W., Wadcock, A. J., “The Interaction between a Pair of Circular Cylinder Normal to a Stream,” Journal of Fluids Mechanics, 61, pp.499-511. (1973)
[12] Williamson, C. H. K., “Evolution of a Single Wake Behind a Pair of Bluff Bodies,” Journal of Fluids Mechanics, 159, pp. 1-18. (1985)
[13] King, R., Johns D. J., “Wake Interaction Experiments with two Flexible Cylinders in Flowing Water,” Journal of Sound and Vibration, 45, pp. 259-283. (1976)
[14] Brika, D., Laneville, A. “The Flow Interaction between a Stationary Cylinder and a Downstream Flexible Cylinder,” Journal of Fluids and Structures, 13, pp. 579-606. (1999)
[15] Zhou, Y., Wang, Z. J., So, R. M. C., Xu, S. J., Jin, W., “Free Vibrations of two Side-By-Side Cylinders in a Cross-Flow,” Journal of Fluids Mechanics, 443, pp. 197-229. (2001)
[16] Zhifu, G., Tianfeng, S., “Classifications of flow pattern on three circular cylinders in equilateral-triangular arrangements,” Journal of Wind and Industrial Aerodynamics, 89, pp. 553-568 (2001)
[17] Yan Boa, Dai Zhou, Cheng Huang, “Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method,” Journal of Computers and Fluids, 39, pp. 882-899(2010)
[18] Novak, M., “Galloping and Vortex Induced Oscillation of Structures,” Proceedings of the Conference on Wind Effects on Buildings and Structures, (1971)
[19] Roberts, B. W., “Low Frequency, Aeroelastic Vibrations in a Cascade of Circular Cylinders, ” Mechanical Engineering Science Monograph, 4. (1996)
[20] Blevins, R. D., “Fluid Elastic Whirling of a Tube Row,” Journal of Pressure Vessel Technology, 96, pp. 263-267. (1974)
[21] Price, S. J., et al. “The Flow-Induced Vibration of a Single Flexible Tube in a Rotated Square Array, ” Journal of Fluids and Structures, 1, pp. 359-378. (1987)
[22] Weaver, D. S. and Yeung, H. C., “Approach Flow Direction Effects on the Cross-Flow Induced Vibrations of A Square Array of Tubes,” Journal of Sound and Vibration, 87, No. 3, pp. 469-482. (1983)
[23] Mulcahy, T. M., Halle., H., Wambsganss., M. W., “Prediction of Tube Bundle Instabilities: Case Studies,” Argonne National Laboratory Report ANL-86-49. (1986)
[24] Fluent Inc. “User’s Guide and UDF Manual,” Fluent Inc., (2006)
[25] Jauvtis, N., Williamson, C. H. K.,. “The effect of two degrees of freedom on vortex-induced vibration at low mass and damping,” J. Fluid. Mech., vol.509, pp. 23-62.(2004)
[26] Zdravkovich, M. M., “Flow Induced Oscillations of two Interfering Circular Cylinders.” Journal of Sound and Vibration, 101(4), pp. 511-521. (1985)
[27] Sung,Y.L., “Flow Induced Oscillations of two Interfering Circular Cylinders.”Numerical simulation of flow induced vibration of two circular cylinders in shear flow.” Department of Mechanical & Electro-Mechanical Engineering,National Sun Yat-sen University.(2009)
[28] Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S., Karniadakis, G. E., “On the effect of spacing on the vortex-induced vibrations of two tandem cylinders.” Journal of Fluids and structures, 24(2008), pp. 833-854. (2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code