Responsive image
博碩士論文 etd-0802112-165002 詳細資訊
Title page for etd-0802112-165002
論文名稱
Title
應用於室內非接觸式生命體徵感測器之窄波束寬天線設計
Design of narrow beamwidth antenna for indoor non-contact vital sign sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-25
繳交日期
Date of Submission
2012-08-02
關鍵字
Keywords
天線、室內、生命體徵、半功率波束寬、陣列、覆板、隔離度
antenna, indoor, vital sign, half power beamwidth (HPBW), array, isolation, superstrate
統計
Statistics
本論文已被瀏覽 5647 次,被下載 2092
The thesis/dissertation has been browsed 5647 times, has been downloaded 2092 times.
中文摘要
生命體徵感測器所偵測的目標為人體的呼吸與心跳,這兩者的訊號強度相較於一般通訊所使用的訊號強度都還要微弱。由於室內為一密閉空間,因此訊號會受到牆壁反射,使得接收天線所接收到的訊號由於多重路徑的影響而降低其準確度。因此在設計應用於室內非接觸式生命體徵感測器時,除了需考慮到天線的效率以及增益外,也需要將天線的半功率波束寬做為設計天線的考量。在本論文中,我們將針對該環境設計一操作於2.45GHz且具窄波束寬的天線。
有別於一般傳統的槽孔與貼片天線,我們提出一接地面環繞的天線,該天線可同時激發槽孔與貼片模態,因此可藉由調整其物理尺寸來調整兩個模態的共振頻率,進而達成雙頻帶或寬頻共振。同時,由於電磁波碰到周圍所環繞的接地面時會形成建設性的反射波,使得天線的增益與波束寬能有較好的表現。並利用接地面環繞天線作為陣列天線的天線單元,再加入覆板的觀念來提升天線增益與減少天線的背向輻射。綜合上述所設計出來的陣列天線其最小波束寬在兩互相垂直平面分別達26與52度,增益為12.2 dBi。為了降低單一天線接收與發射訊號之間的干擾,因此在本論文中將發射與接收分成兩根天線,並針對兩根天線之間隔離度的問題作探討與改善。
Abstract
Differences between indoor non-contact vital sign sensor and general sensors are “indoor” and “vital sign”. In indoor environment, receiving signals encounter multipath problem caused by the reflection of walls and furniture. Two main vital signs that we are concerned with are heartbeat and respiration; both of them are weaker than general signals used in communication. To overcome problems caused by multipath and weak signal strength, in this thesis, we design a narrow beamwidth antenna operating at 2.45 GHz for indoor non-contact vital sign sensor.
We propose a ground surrounded antenna (GSA) which differs from traditional slot and patch antenna. The proposed GSA excites slot mode and patch mode at the same time, so that we can achieve dual-bands or wide band by adjusting its physical parameters. Meanwhile, the reflected wave bounced back from the surrounding ground plane can cause constructive interference so that the antenna possesses better gain and beamwidth. Using GSA as the unit antenna of antenna array to achieve narrow beamwidth design, and adding the concept of superstrate can enhance antenna gain and reduce backlobe radiation. The minimum beamwidth at two orthogonal planes are 26 and 52 degrees respectively, and the antenna gain achieves 12.2 dBi. To reduce the interference between receiving and transmitting signals in single antenna, we use two separate antennas. Finally, we discuss and improve isolation problem between two antennas.
目次 Table of Contents
誌 謝 ii
摘 要 iii
Abstract iv
1. 序論 1
1.1研究背景與動機 1
1.2研究方法 8
1.3論文大綱 8
2. 接地面環繞天線設計 10
2.1接地面環繞天線介紹 10
2.2物理參數分析 13
2.3實作與量測探討 21
3. 陣列與覆板設計 23
3.1陣列天線理論 23
3.2陣列天線設計 25
3.3覆板應用的研究近況 28
3.4覆板設計 29
3.5具覆板之陣列天線設計 33
3.6實作與量測探討 35
4. GSA陣列天線隔離度探討 41
4.1 MIMO天線隔離方法概述 41
4.2 擺放位置對於隔離度的影響 42
4.3 實作與量測探討 47
5. 結論 50
參考文獻 51
參考文獻 References
[1] 余家杰、徐業良,「國內外遠距居家照護發展之現況與挑戰」發表於「2009年社區教育暨老人福祉學術研討會」,2009年4月16日
[2] C. Li, Y. Xiao, and J. Lin, “Design guidelines for radio frequency non-contact vital sign detection,” IEEE EMBS 29th annual international conference, pp.1651–1654, 2007.
[3] N.A. Goodman and K. L. Melde, “The impact of antenna directivity on the small-scale fading in indoor environments,” IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3771–3777, Dec. 2006.
[4] C.A. Balanis, Antenna theory analysis and design, 2nd ed., John Wiley & Sons, 1997.
[5] R.S. Elliott, Antenna theory and design, revised ed., John Wiley & Sons, New Jersey, 2003.
[6] H.Y. Yang and N.G. Alexopoulos, “Gain enhancement methods for printed circuit antennas through multiple superstrates,” IEEE Trans. Antennas Propag., vol. AP-35, no. 7, pp. 860–863, Jul. 1987.
[7] C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications, John Wiley & Sons, New Jersey, 2006.
[8] C. Borja and J. Romeu, “On the behavior of Koch island fractal boundary microstrip patch antenna,” IEEE Trans. Antennas Propag., vol. 51, no. 6, pp. 1281–1291, Jun. 2003.
[9] N.G. Alexopoulos and D.R. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propag., vol. AP-32, no. 8, pp. 807–816, Aug. 1984.
[10] H. Vettikalladi, O. Lafond, and M. Himdi, “High-efficient and high-gain superstrate antenna for 60-GHz indoor communication,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1422–1425, 2009.
[11] J. Ju, D. Kim, and J. Choi, “Fabry-perot cavity antenna with lateral metallic walls for WiBro base station applications,” Electron. Lett., vol. 45, no. 3, pp. 141–142, 2009.
[12] D. Kim, J. Ju, and J. Choi, “A mobile communication base station antenna using a genetic algorithm based fabry-perot resonance optimization,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 1053–1058, Feb. 2012.
[13] H. Attia, L. Yousefi, and O.M. Ramahi, “Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates: theory and experiment,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1438–1445, May 2011.
[14] A. Foroozesh and L. Shafai, “Effects of artificial magnetic conductors in the design of low-profile high gain planar antennas with high-permittivity dielectric superstrate,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 10–13, 2009.
[15] A. Pirhadi, H. Bahrami, and J. Nasri, “Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 2101–2106, Apr. 2012.
[16] A. Foroozesh and L. Shafai, ” Investigation into the effects of the reflection phase characteristics of highly-reflective superstrates on resonant cavity antennas,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3392–3396, Oct. 2010.
[17] L. Moustafa and B. Jecko, “Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the Ku-band,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 342–346, 2010.
[18] A.T. Mobashsher, M.T. Islam, N. Misran, “A novel high-gain dual-band antenna for RFID reader applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 653–656, 2010.
[19] P. Burghignoli, G. Lovat, F. Capolino, D.R. Jackson, and D.R. Wilton, “Highly polarized, directive radiation from a fabry-perot cavity leaky-wave antenna based on a metal strip grating,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3873–3882, Dec. 2010.
[20] A. Foroozesh and L. Shafai, “On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 78–91, Jan. 2012.
[21] S. Park and C. Jung, “Compact MIMO antenna with high isolation performance,” Electron. Lett., vol. 46, no. 6, pp. 390–391, 2010.
[22] C.C. Hsu, K.H. Lin, and H.L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-shaped branch for MIMO antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3936–3939, Oct. 2011.
[23] A. Diallo, C. Luxey, P.L. Thuc, R. Staraj, and G. Kossiavas, “Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3063–3074, Nov. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code