Responsive image
博碩士論文 etd-0802113-133845 詳細資訊
Title page for etd-0802113-133845
論文名稱
Title
在使用領航訊號輔助之正交分頻多工系統中的一種不傳旁帶資訊之降低功率峰均值比技術
A Novel PAPR Reduction Method for Pilot-Aided OFDM Systems without Side Information
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-26
繳交日期
Date of Submission
2013-09-02
關鍵字
Keywords
領航輔助訊號、峰均值功率比、正交分頻多工、高斯整數
peak-to-average power ratio (PAPR), pilot tone, OFDM, Gaussian Integer
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
在正交分頻多工系統中,主要的缺點為有一個過高峰均值功率比的現象,因此這幾年有許多的方法被提出來降低峰均值功率比的效能。其中一個方法為在正交分頻多工系統中插入領航輔助訊號,在過去使用orthogonal Walsh-Hadamard sequences (OWHS)作為領航輔助訊號並且選擇PAPR最小的信號作傳送,而在接收端使用相關性解偵測領航訊號時,不需要傳送旁帶資訊;然而OWHS 缺點為其序列的數量會被序列的長度所限制,因此PAPR效能無法得到更進一步的改善。而為了在有限序列長度的情況下,有效的提升序列的數量,選擇使用sub-sampled Zadoff-Chu sequence (SZCS),不過SZCS缺點為在不同群之間其序列的相關性過於接近,如此一來使用相關性解偵測領航訊號時,必須傳送些許的旁帶資訊。因此本篇論文加入一組Gaussian integer perfect sequence (GIPS)作為領航輔助訊號,GIPS其序列的數量不會被序列的長度所限制並且在不同群之間序列擁有較低的相關性,值得注意的是在時域上GIPS為等振幅的定值,因此從模擬結果中可以觀察出其降低PAPR效能在OWHS與SZCS之中是最好的。此外,利用GIPS的特性在偵測領航輔助訊號時,可以直接地解出所傳送的領航輔助訊號而不需要傳送任何的旁帶資訊。
Abstract
High peak-to-average power ratio (PAPR) is one of the major drawbacks for orthogonal frequency division multiplexing (OFDM) systems. Recently, various schemes had been proposed to reduce the PAPR performance. For the pilot-aided OFDM systems, inserting various orthogonal Walsh-Hadamard sequences (OWHS) as pilots and selecting one signal with the lowest PAPR to transmit is a scheme without side information. However, the PAPR reduction performance is restricted since the number of sequences which is limited by sequence length, i.e. the number of pilot tones. To increase the number of various pilots with finite sequence length, sub-sampled Zadoff-Chu sequence (SZCS) was selected as pilots. Unfortunately, it requires transmitting side information since the correlation between different sequences. In this paper, the Gaussian integer perfect sequence (GIPS) is employed as pilots. The number of sequences with lower correlation is larger than the sequence length. In addition, it is worthy noting that the time-domain signal of proposed pilots is with equal magnitude. From simulation results, the proposed scheme is with the best PAPR reduction performance among various schemes, i.e. OWHS and SZCS. In addition, the proposed scheme does not require any side information. The selection of pilot can be directly detected by utilizing the characteristic of GIPS.
目次 Table of Contents
論文審定書……………………………………………………………………...……..i
致謝…………………………………………………………………………...……….ii
中文摘要…………………………………………………………….………………..iii
Abstract…………………………………………………….…………………………iv
目錄………………………………………………………………………….………...v
圖目錄………………………………..……………………………...…..………...…vii
第一章 導論…………………………………………………………………………1
1.1 研究動機………………………………………………………………3
1.2 論文架構………………………………………………………………3
第二章 系統架構……………………………………………………………………4
2.1 正交分頻多工系統之原理介紹………………………………………4
2.2 正交分頻多工系統之基本架構………………………………………6
2.2.1 正交分頻多工系統之正交性…………………………………..8
2.2.2 正交分頻多工系統加入防護區間……………………………..8
2.3 正交分頻多工系統信號之峰均值功率比…………………………....9
2.4 正交分頻多工系統架構之傳送端加入領航輔助信號……………..13
第三章 領航信號加入序列之結構……………………………………………..…16
3.1 領航信號加入序列之架構……………………………………...……16
3.2 序列之介紹………………………………………………..…18
3.2.1 領航信號之Orthogonal Walsh-Hadamard Sequences介紹…..18
3.2.2 領航信號之Sub-Sampled Zadoff-Chu Sequence介紹……….18
3.3 高斯整數完美序列之基本定義……………………………………..21
3.4 高斯整數完美序列之架構…………………………………………..24
第四章 不傳送旁帶資訊之偵測領航訊號系統架構……………………………..27
4.1 序列相關性之偵測領航訊號無旁頻帶系統架構………………..…27
4.2 最短距離解之偵測領航訊號無旁頻帶系統架構……………..……29
第五章 峰均值功率比效能與偵測領航信號效能之模擬分析………………..…32
5.1 序列間自相關性與交相關性分析比較………………………….….32
5.1.1 序列於同一群內相關性分析………………………………....32
5.1.2 序列於不同群之間相同位置相關性分析………………...….32
5.2 峰均值功率比效能模擬分析………………………………………..34
5.3 偵測領航信號之Detection Probability效能模擬分析……………...34
第六章 結論………………………………………………………………………..40
參考文獻………………………..……………………………………………………41
中英對照表…………………………………………………………………………..47
縮寫對照表………………………….……………………………………………….51
參考文獻 References
[1] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[2] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[3] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sept. 1999.
[4] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std 802.16-2004, Oct. 2004.
[5] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. IEEE PIMRC’95, Toronto, Canada, Sept. 1995, pp. 71–75.
[6] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, May 1998.
[7] X. Huang, J. Lu, J. Chuang and J. Zheng, “Companding transform for the reduction of peak-to-average power ratio of OFDM signals,” in Proc. IEEE Veh. Technol. Conf., May 2001, vol. 2, pp. 835–839.
[8] Y. Wang, L.-H. Wang, J.-H. Ge, and B. Ai, “An efficient nonlinear companding transform for reducing PAPR of OFDM signals,” IEEE Trans. Broadcast., vol. 58, no. 4, pp. 677–684, 2012.
[9] S. W. Kim, H. S. H. Byeon, J. K. Kim, and H.-G. Ryu, “An SLM-based real-time PAPR reduction method using dummy sequence insertion in the OFDM communication,” in Proc. IEEE Int. Conf. Inform. Commun. Signal Process. (ICICS’05), Bangkok, Thailand, Oct. 2005, pp. 258–262.
[10] M. Breiling, S. H. Muller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239–241, June 2001.
[11] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804–808, Dec. 2007.
[12] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[13] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, Sept. 2004.
[14] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[15] L. Yang, K. K. Soo, Y. M. Siu, and S. Q. Li , “A low complexity selected mapping scheme by use of time domain sequence superposition technique for PAPR reduction in OFDM system,” IEEE Trans. Broadcast., vol. 54, no. 4, pp. 821–824, Dec. 2008.
[16] A. Ghassemi and T. A. Gulliver, “Partial selective mapping OFDM with low complexity IFFTs,” IEEE Commun. Lett., vol. 12, no. 1, pp. 4–6, Jan. 2008.
[17] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652–4660, Dec. 2005.
[18] D.-W. Lim, J.-S. No, C.-W Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[19] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp. 333–338, Sept. 1999.
[20] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, Apr. 2001.
[21] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161–1166, Mar. 2008.
[22] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[23] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[24] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes with low peak-to-average power ratios,” IEEE Trans. Info. Theory, vol. 46, no. 6, pp. 1974–1987, Sept. 2000.
[25] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communication,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, Jan. 2000.
[26] K.Yang and S. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE Commun. Lett., vol. 7, no. 4, pp. 174–176, Apr. 2003.
[27] A. Saul, “Generalized active constellation extension for peak reduction in OFDM systems,” in Proc. IEEE Int. Conf. Commun. (ICC’05), Seoul, Korea, Sept. 2005, vol. 3, pp. 1974–1979.
[28] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sept. 2003.
[29] T. Wattanasuwakull and W. Benjapolakul, “PAPR reduction for OFDM transmission by using a method of tone reservation and tone injection,” in Proc. 2005 Inf., Commun. Signal Process., Dec. 2005, pp. 273–277.
[30] F. Hasegawa, A. Okazaki, H. Kubo, D. Castelain and D. Mottier, “A novel PAPR reduction scheme for SC-OFDM with frequency domain multiplexed pilots,” IEEE Commun. Lett., vol. 16, no.9, pp. 1345–1348, 2012.
[31] M. J. Fernandez-Getiom, O. Edfors and J. M. Paze-Borrallo, “Peak power reduction for OFDM systems with orthogonal pilot sequences,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 47–51, Jan. 2006.
[32] W. W. Hu, C. P. Li, and J. C. Chen, “Peak power reduction for pilot-aided OFDM systems with semi-blind detection,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1056–1059, July 2012.
[33] S. Hosokawa, S. Ohno, K.A.D. Teo, and T. Hinamoto, “Pilot tone design for peak-to-average power ratio reduction in OFDM,” in Proc. IEEE Int. Symp. Circuits Syst., 2005, vol. 6, pp. 6014–6017.
[34] S. H. Wang, I. S. Chen, and C. P. Li, “Sparse Gaussian integer sequences with ideal periodic autocorrelation functions,” under preparing.
[35] R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inf. Theory, vol. 7, no. 4, pp. 254–257, Oct. 1961.
[36] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inf. Theory, vol. 8, no.6, pp. 381–382, Oct. 1962.
[37] Z. Zhou, X. Tang, and G. Gong, “A new class of sequences with zero or low correlation zone based on interleaving technique,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4267–4273, Sept. 2008.
[38] X. Tang and W. H. Mow, “A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5729–5734, Dec. 2008.
[39] H. Chenggao, T. Hashimoto, and N. Suehiro, “Poly phase zero-correlation zone sequences based on complete complementary codes and DFT matrix,” in Proc. Int. Workshop Signal Design and Its Appl. Commun. (IWSDA’07), Sept. 2007, pp. 172–175.
[40] Z. Zhou, Z. Pan, and X. Tang, “A new family of optimal zero correlation zone sequences from perfect sequences based on interleaved technique,” in Proc. Int. Workshop Signal Design and Its Appl. Commun. (IWSDA’07), Sept. 2007, pp. 195–199.
[41] H. Torii and M. Nakamura, “Extension of family size of ZCZ sequence sets derived from perfect sequences and unitary matrices,” in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications (ISSSTA’02), Prague, Czech Republic, Sept. 2002, pp. 170–174.
[42] H. Torii, M. Nakamura, and N. Suehiro, “A new class of zero-correlation zone sequences,” IEEE Trans. Inf. Theory, vol. 50, no.3, pp. 559–565, Mar. 2004.
[43] Z. Zhou and X. Tang, “A new class of sequences with zero correlation zone based on interleaved perfect sequences,” in Proc. IEEE Information Theory Workshop (IITW’06), Oct. 2006, pp. 548–551.
[44] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, no. 2, pp. 282–289, Feb. 2001.
[45] W. W. Hu, S. H. Wang, and C. P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074–6079, Nov. 2012.
[46] C. P. Li, S. H. Wang, and K. C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
[47] S. H. Wang, J. C. Xie, C. P. Li, and Y. F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242–1251, Apr. 2011.
[48] S. H. Wang and C. P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941–944, Nov. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.83.150
論文開放下載的時間是 校外不公開

Your IP address is 3.16.83.150
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code