Responsive image
博碩士論文 etd-0802113-143019 詳細資訊
Title page for etd-0802113-143019
論文名稱
Title
以熱蒸鍍法沉積碲化鉍熱電薄膜特性之研究
Investigation of the thermoelectric properties of Bi2Te3 thin films by thermal evaporation processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-09-02
關鍵字
Keywords
功率因子、熱蒸鍍、席貝克係數、熱電、鉍化銻
thermal evaporation, Bi2Te3, power factor, thermoelectric, Seebeck coefficient
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
石油、煤、瓦斯等能源終有耗盡的一天,而基於對環保的訴求,熱電材料具備了低污染及再生能源的優點,經由熱電的工作原理可將廢熱轉換成可用電能,增加能源利用的效率。碲化鉍與其系列合金為室溫下最佳之熱電材料,本實驗利用熱蒸鍍法(thermal evaporation)製備碲化鉍熱電薄膜,探討基板升溫與熱退火處理對薄膜物性及電性之影響。接下來,利用共蒸鍍法將金屬銀原子摻雜到Bi2Te3薄膜,同樣做基板升溫及熱退火處理,比較有摻雜與無摻雜對熱電特性之影響。
在未摻雜時,由SEM可觀察到,增加基板溫度時其晶粒大小會隨著溫度增加而變大,由X-ray繞射分析得知,基板溫度在150°C時可得到較佳之晶相以及較佳的功率因子為 4.89 µW/cm∙K2。當溫度達到200°C時會產生BiTe雜相,使得薄膜品質變差,且材料特性會從n-type轉變為p-type,使得Seebeck係數呈現先上升後下降的趨勢。接著將試片以熱退火方式處理,由實驗結果知薄膜原子會重新排列,使得缺陷減少,進而提升Seebeck係數。於本研究中,當基板溫度在150°C,熱退火溫度250°C,時間0.5小時的情況下得到最好的功率因子為6.05 µW/cm∙K2。
之後以金屬原子Ag做摻雜,隨著摻雜的濃度提升,Seebeck係數在摻雜濃度16.7wt%有最佳值,此時所求得之最佳功率因子為0.18 µW/cm∙K2。接著以此摻雜濃度進行基板升溫及熱退火處理,結果顯示在基板溫度100°C,熱退火溫度250°C,時間0.5小時的情況下,得到最佳功率因子約為 2.1 µW/cm∙K2。
Abstract
The energy sources, such as petroleum, coal, coal gas, etc., will exhaust in the near future. On the other hand, the thermoelectric power generator exhibits the advantages of environmental protection and renewable energy. It generates electric energy from the useless heat by thermoelectric effect. Bismuth telluride based compounds is the best thermoelectric materials in the room temperature. In this study, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films. The influences of substrate temperature and annealing temperature on the surface morphology, crystal structure and thermoelectric properties of the films were investigated. Further, the Ag-doped Bi2Te3 thin films were fabricated by co-evaporation, and their properties were compared with those of undoped Bi2Te3 thin films.
For the undoped Bi2Te3 thin films, when the substrate temperature increased, the grain size of thin film whi observed by SEM also increased. Furthermore, from the analysis of X-ray diffraction patterns, the crystallization of Bi2Te3 thin films would be optimized at substrate temperature of 150°C. But when the temperature reaches 200°C, the BiTe phase existed and the quality of thin film was deteriorated. In addition, it caused the thin film changed from n-type to p-type and the Seebeck coefficient increased at first then decreased. The maximum value of power factor was 4.89 µW/cm∙K2 at the substrate temperature of 150°C. After thermal annealing, the crystalline structure of the thin film was improvd and the number of defects was decreased, the Seebeck coefficient would increase. The maximized value of power factor (6.05 µW/cm∙K2) could be obtained at the substrate temperature of 150°C, and annealing temperature of 250°C (0.5hr) .
Finally, the doping of Ag was adopted to modulate the Seebeck coefficient and the electrical conductivity. The maximized value of the power factor (2.1 µW/cm∙K2) could be obtained at the doping concentration of 16.7wt%, the substrate temperature of 150°C, and the annealing temperature of 100°C (0.5hr).
目次 Table of Contents
摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 6
第二章 理論分析與文獻回顧 9
2.1 熱電理論 9
2.1.1 Seebeck效應 9
2.1.2 Peltier效應 10
2.1.3 Thomson效應 11
2.2 熱電物理性質 13
2.2.1 熱電優值(Figurre of Merit, ZT) 13
2.2.2 晶格振動之量子化與聲子 15
2.2.3 電傳導特性 16
2.3 碲化鉍(Bi2Te3)系列材料 17
2.4 文獻回顧 18
第三章 實驗方法與步驟 21
3.1 實驗步驟 21
3.2 實驗流程 22
3.2.1 Bi2Te3薄膜於不同基板溫度及熱退火之熱電特性探討 22
3.2.2 Ag摻雜Bi2Te3薄膜於不同基板溫度及熱退火之熱電特性探討 24
3.3 實驗儀器介紹 25
3.3.1 基板清洗 25
3.3.2 高溫及低壓爐管 (Horizontal Furnace) 25
3.3.3 蒸鍍法 26
3.3.4 熱退火 28
3.4 材料特性分析儀器 29
3.4.1 X光繞射儀(X-ray diffraction, XRD) 29
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30
3.4.3 能量散佈光譜儀(Energy Dispersive X-ray Spectroscopy, EDS) 32
3.5 熱電特性分析 33
3.5.1 Seebeck 係數量測 33
3.5.2 電阻率量測 34
第四章 結果與討論 36
4.1 原始粉末分析 36
4.2 Bi2Te3薄膜特性之探討 37
4.2.1 基板升溫製程對Bi2Te3薄膜特性影響之探討 40
4.2.2 熱退火製程對Bi2Te3薄膜特性影響之探討 48
(a) 熱退火0.5小時 49
(b) 熱退火1小時 55
(c) 熱退火時間0.5小時及1小時之比較 61
4.3 Ag摻雜Bi2Te3薄膜之熱電特性探討 64
4.3.1 不同Ag摻雜量對Bi2Te3薄膜之熱電特性探討 64
4.3.2 Ag摻雜Bi2Te3薄膜於不同沉積溫度之探討 71
4.3.3 熱退火製程對Ag摻雜Bi2Te3熱電薄膜之探討 77
(a) 熱退火0.5小時 78
(b) 熱退火1小時 84
4.4 未摻雜Bi2Te3與Ag摻雜Bi2Te3薄膜之比較 90
4.4.1 升溫比較 90
4.4.2 熱退火比較 93
第五章 結論 96
參考文獻 97
參考文獻 References
[1] R. M. Dreizler and E. K. U. Gross, Density functional theory. Springer-Verlag, Berlin, 1990.
[2] G. A. Slack, CRC Handbook of Thermoelectrics. FL: Boca Raton, 1995.
[3] G. Mahan, B. Sales, and J. Sharp, "Thermoelectric Materials: New Approaches to an Old Problem," Physics Today, 50 (1997) 42.
[4] G. D. Mahan, "Good Thermoelectrics," in Solid State Physics. vol. Volume 51, E. Henry and S. Frans, Eds., ed: Academic Press, (1997) 81.
[5] B. Sales, Mater. Res. Soc. Bull. , 23 (1998) 15.
[6] T. M. Tritt, "Thermoelectric Materials: Principles, Structure, Properties, and Applications," in Encyclopedia of Materials: Science and Technology (Second Edition), K. H. J. B. Editors-in-Chief: , W. C. Robert, C. F. Merton, I. Bernard, J. K. Edward, M. Subhash, et al., Eds., ed Oxford: Elsevier, (2002) 1.
[7] C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, "Thermoelectric properties of the doped Kondo insulator:NdXCe3-xPt3Sb4," Physical Review B, 58 (1998) 16057.
[8] K. A. Gschneidner, L. Eyring, and S. B. Máquez, Handbook on the Physics and Chemistry of Rare Earths, (1985) 797.
[9] 施智超, "薄膜式熱電元件簡介及其應用," 工業材料, 310期, 2012.
[10] BioLite. Available: http://www.biolitestove.com/
[11] Tellurex. Available: http://www.tellurex.com/products/tPOD1.php
[12] T. Kajikawa, "Thermoelectric Application for Power Generation in Japan," Advances in Science and Technology ,74 (2010) 83.
[13] Panasonic. Panasonic Develops Thermoelectric Tubes for Compact Geothermal Electricity Generation and Waste Heat Recovery. Available: http://panasonic.net/
[14] 朱旭山, "奈米結構熱電材料之發展回顧," 工業材料雜誌, 298期, 2011。
[15] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 47 (1993) 12727.
[16] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, 47 (1993) 16631.
[17] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Phys Rev B Condens Matter, 53 (1996) 10493.
[18] C. LaBounty, A. Shakouri, and J. E. Bowers, "Design and characterization of thin film microcoolers," Journal of Applied Physics, 89 (2001) 4059.
[19] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, 413 (2001) 597.
[20] 朱旭山, "熱電發電技術及其應用方向," 材料世界網, 2010。
[21] 朱旭山,"熱電技術於車輛廢熱回收及致冷空調之研發與應用," 材料世界網, 2012。
[22] G. S. Nolas, G. A. Slack, J. L. Cohn, and S. B. Schujman, "The next generation of thermoelectric materials," in Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on, (1998) 294.
[23] 朱旭山,"熱電材料與元件之發展與應用," 材料世界網, 2005。
[24] W. Thomson, "An Account of Carnot's Theory of the Motive Power of Heat; with Numerical Results deduced from Regnault's Experiments on Steam.," Transactions of the Royal Society of Edinburgh, 16 (1849) 34.
[25] W. Thomson, "On a mechanical theory of thermo-electric currents," Philosophical Magazine , (1852) 3.
[26] W. Thomson, "Account of Researches in Thermo-Electricity," Proceedings of the Royal Society of London, 7 (1854) 49.
[27] W. Thomson, "On the Electro-Dynamic Qualities of Metals:--Effects of Magnetization on the Electric Conductivity of Nickel and of Iron," Proceedings of the Royal Society of London, 8 (1856) 546.
[28] 葉晉嘉, "N型Bi2Te2.7Se0.3熱電材料之研究," 國立中山大學電機工程學系碩士論文, 2011。
[29] G. H. J. , Thermoelectric refrigeration. Plenum Press, 1964.
[30] D. M. Rowe, Thermoelectircs handbook: Macro to nano. CRC Press, 2006.
[31] G. Mahan, Sales, B., and Sharp, J, "Thermoelectric materials: New approaches to an old problem," Nanostructured materials, 5 (1995) 270.
[32] N. Scoville, C. Bajgar, J. Rolfe, J. P. Fleurial, and J. Vandersande, "Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles," Nanostructured Materials, 5 (1995) 207.
[33] H. Zou, D. M. Rowe, and G. Min, "Growth of p- and n-type bismuth telluride thin films by co-evaporation," Journal of Crystal Growth, 222 (2001) 82.
[34] X. Duan, J. Yang, C. Xiao, and W. Zhu, "Structural and thermoelectric properties of Ag-doped Bi2(Te0.95 Se0.05)3 thin films prepared by flash evaporation," Journal of Physics D: Applied Physics, 40 (2007) 5971.
[35] P. A. L.M. Goncalves, Gao Min, D.M. Rowe, C. Couto, J.H. Correia, "Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications," Vacuum, 82 (2008) 1499.
[36] 許家展、李文錦, "從ICT 2012 看全球熱電技術發展趨勢與應用(上)," 工業材料雜誌, 310期, 2012。
[37] 林麗娟, "X光繞射原理及其應用," 工業材料, 86期, 1994。
[38] Z. H. Zheng, P. Fan, T. B. Chen, Z. K. Cai, P. J. Liu, G. X. Liang, et al., "Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition," Thin Solid Films, 520 (2012) 5245.
[39] H. W. Z. J.W.G. Bos, M.-H. Lee, N.P. Ong, R. J. Cava, "The structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n," Physical Review B, 75 (2007) 195203.
[40] Z.-h. Zheng, P. Fan, G.-x. Liang, D.-p. Zhang, X.-m. Cai, and T.-b. Chen, "Annealing temperature influence on electrical properties of ion beam sputtered Bi2Te3 thin films," Journal of Physics and Chemistry of Solids, 71 (2010) 1713.
[41] J. Yang, R. Chen, X. a. Fan, S. Bao, and W. Zhu, "Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing," Journal of Alloys and Compounds, 407 (2006) 330.
[42] D. H. Kim and G. H. Lee, "Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering," Materials Science and Engineering ,131 (2006) 106.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.192.107.255
論文開放下載的時間是 校外不公開

Your IP address is 44.192.107.255
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code