Responsive image
博碩士論文 etd-0802113-164123 詳細資訊
Title page for etd-0802113-164123
論文名稱
Title
P-型ZnO 薄膜磁阻及霍爾效應之研究
Study of Magneto-Transport and Hall Effect of P-type ZnO Film.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-09-02
關鍵字
Keywords
原子層沉積系統、磁阻、霍爾量測、氧化鋁、氧化鋅
Hall effect, magnetoresistance, ZnO, Al2O3, atomic layer deposition
統計
Statistics
本論文已被瀏覽 5658 次,被下載 1197
The thesis/dissertation has been browsed 5658 times, has been downloaded 1197 times.
中文摘要
纖鋅結構的氧化鋅沿c-軸有自發性極化,造成了量子侷限史塔克效應,降低
發光效率,改用非極化面取向之纖鋅結構氧化鋅可避免此問題,故了解非極化面取向氧化鋅的性質有其研究價值。本實驗以研究退火後m-面氧化鋅其結構、光性和電性為主,探討m-面氧化鋅薄膜的物理性質,磊晶薄膜是由原子層沉積系統(ALD)在m-面氧化鋁基板上長成。從霍爾量測中顯示為P-型半導體,薄膜經過退火後會使其載子濃度下降。薄膜的電阻率隨溫度的下降而升高為典型半導體特徵。電阻率對溫度關係曲線可利用熱活化能公式擬合出雜質能階,擬合結果分別可在高溫區及低溫區各得到一個雜質能階,顯示在轉折溫度上下有不同的雜質能階主導。低溫磁阻的量測得負磁阻值為弱局域效應。由PL光譜的結果可得到本實驗氧化鋅能隙約為3.27-3.3eV,但退火後PL光譜全貌有些變化,可能因為缺陷所致的能隙中間的雜質態增減重新分佈,而且所發射之螢光強度的偏振度,即電場振盪方向沿c-軸或沿a-軸分量的比例,結果也產生了變化。
Abstract
Wurtzite ZnO exhibits along its c-axis a spontaneous polarization that leads to Quantum-Confined Stark Effect (QCSE) and reduces its luminous efficiency. Use of ZnO crystals with the c-axis in-plane oriented, such as those of m-cut and a-cut surface, are considered a solution to the QCSE problems. In this thesis work, thin film samples of m-plane oriented ZnO (m-ZnO) are grown on m-plane sapphire by Atomic Layer Deposition (ALD). The post-deposition annealing effects on the crystal structures, optical and electrical transport properties of the m-ZnO thin films were investigated. From Hall measurement results, the samples are p-type semiconductors whose carrier concentrations decrease after post-annealing. The functional dependence of electrical resistivity on temperature delineate classic semiconductor behaviors characteristic of thermally-activated impurities of specific energy levels. Analysis indicates the existence of a transition temperature at which the overall properties show a transition temperature between two electronic phases, each having a distinctive set of active impurity energy levels. Weak localization effect leads to negative MR, which is particularly prominent at low temperatures. Multi-peak analysis give the band gap Eg ~ 3.27-3.3(eV), with some small differences along c-axis and a-axis after annealing. The band gap states variations are more complex, possibly due to the intricate emergence of defects or imperfection of various kinds.
目次 Table of Contents
致謝............................................................... i
摘要 ii
Abstract........................................................................... iii
目錄..................................................................................iv
圖目錄...............................................................................v
表目錄...............................................................................vii
第一章 前言及文獻回顧...................................................... 1
第二章 基本理論及儀器介紹............................................... 5
2-1原子層沉積(atomic layer deposition)................................5
2-2 X光繞射儀(X-ray duffractometer).................................... 7
2-3光致螢光(photoluminescence) ........................................11
2-4 電性量測..................................................................... 12
2-4-1物理性質量測系統(PPMS)簡介.................................12
2-4-2接觸電阻............................................................... 12
2-4-3 霍爾量測.............................................................. 15
第三章 實驗設計............................................................... 19
第四章 實驗結果與分析.................................................... 21
4-1 X光繞射(XRD )結果分析.............................................. 21
4-2光致螢光(photoluminescence,PL )結果分析............... 29
4-3 電性分析................................................................. 34
第五章 結論.................................................................. 47
參考文獻...................................................................... 48
參考文獻 References
[1] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, "Effects of AIN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE" , Journal of Crystal Growth, vol. 98, pp. 209-219, 1989.
[2] S.Nakamura, "GaN Growth Using GaN Buffer Layer" , Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
[3] M. H. Huang, "Room-Temperature Ultraviolet Nanowire Nanolasers" , Science vol. 292, pp. 1897-1899, 2001.
[4] Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, "Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing" , Journal of Crystal Growth, vol. 259, pp. 335-342, 2003.
[5] A. Tsukazaki, " Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO" , Nat Mater, vol. 4, PP.42-46, 2005.
[6] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices" , Journal of Applied Physics, vol. 98, pp. 041301-103, 2005.
[7] T. Hanada,'Basic Properties of ZnO, GaN and Related Materials' , in Oxide and Nitride Semiconductors: Processing, Properties and Applications, Takafumi Yao, Soon-Ku Hong, (editors), Springer, Berlin, 2009. ISBN:3-540-88846-2.
[8] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications" , J. Phys.: Condens. Matter, vol. 16, PP.829-858,2004.
[9] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect" , Physical Review Letters, vol. 53, pp. 2173-2176, 1984.
[10] T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, "Optical properties of excitons in ZnO-based quantum well heterostructures" , Semicond. Sci. Technol. , vol. 20, pp. S78-S91, 2005.
[11] E. Przezdziecka, Ł. Wachnicki, W. Paszkowicz, E. Łusakowska, T. Krajewski, G. Łuka, E. Guziewicz, and M. Godlewski, "Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature" , Semicond. Sci. Technol. , vol. 24, PP.105014, 2009.
[12] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, "Temperature dependence of excitonic luminescence from nanocrystalline ZnO films" , Journal of Luminescence, vol. 99, pp. 149-154, 2002.
[13] H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Indium tin oxide thin films for organic light-emitting devices" , Applied Physics Letters, vol. 74, pp. 3444-3446, 1999.
[14] A. Yamada, B. Sang, and M. Konagai, "Atomic layer deposition of ZnO transparent conducting oxides" , Applied Surface Science, vol. 112, pp. 216-222, 1997.
[15] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, "Control of p- and n-type conductivity in sputter deposition of undoped ZnO" , Applied Physics Letters, vol. 80, pp. 1195-1197, 2002.
[16] B. M. Ataev, V. V. Mamedov, A. K. Omaev, and B. A. Magomedov, "Epitaxial ZnO films grown by RF-assisted low-temperature CVD method" , Materials Science in Semiconductor Processing, vol. 6, pp. 535-537, 2003.
[17] M. A. L. Johnson, S. Fujita, W. H. Rowland, W. C. Hughes, J. W. Cook, and J. F. Schetzina, "MBE growth and properties of ZnO on sapphire and SiC substrates" , Journal of Electronic Materials, vol. 25, pp. 855-862, 1996.
[18] C.-J. Yang, S.-M. Wang, S.-W. Liang, Y.-H. Chang, C. Chen, and S. Jia-Min, "Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition" , Applied Physics Letters, vol. 90, pp. 033104-1-3, 2007.
[19] M. Sugiura, Y. Nakashima, T. Nakasaka, and T. Kobayashi, "PLD growth of ZnO film free from deep level emission using (La,Sr)TiO3 substrate" , Applied Surface Science, vol. 197–198, pp. 472-474, 2002.
[20] W.-T. Chiou, W.-Y. Wu, and J.-M. Ting, "Growth of single crystal ZnO nanowires using sputter deposition" , Diamond and Related Materials, vol. 12, pp. 1841-1844, 2003.
[21] Y. Chen, D. M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization" , J. Appl. Phys. , vol. 84, PP.3192-3918, 1998.
[22] T. Minami, T. Yamamoto, and T. Miyata, "Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering" , Thin Solid Films, vol. 366, pp. 63-68, 2000.
[23] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, "p-type conduction in N--Al co-doped ZnO thin films" , Applied Physics Letters, vol. 85, PP.3134-3135, 2004.
[24] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, "Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition" , Thin Solid Films, vol. 445, pp. 263-267, 2003.
[25] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, "Realization of p-type ZnO thin films via phosphorus doping and thermal
activation of the dopant" , Applied Physics Letters, vol. 83, PP.63-65, 2003.
[26] T. Fukumura, Z.-W. Zin, A. Ohtomo, H. Koinuma, and M.Kawasaki, "An oxide-diluted magnetic semiconductor: Mn-doped ZnO" , Applied Physics Letters, vol. 75, PP.3366-3368, 1999.
[27] M. Birkholz, Thin Film Analysis by X-Ray Scattering, Wiley-VCH, Weinheim (Germany) 2006, ISBN 3-527-31052-5.
[28] D. K. Schroder,' Smiconductor Material and Device Characterization' , Wily-IEEE Press, 3rd edition, Hoboken NJ (USA), 2006, ISBN -10: 0-471-73906-7
[29] 沈志昇, "The electric properties of m-plane ZnO grown by ALD" , 國立中山大學碩士論文, 2013.
[30] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, "Annealing effect on the property of ultraviolet and green emissions of ZnO thin films" , Journal of Applied Physics, vol. 95, pp. 1246-1250, 2004.
[31] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates" , Applied Physics Letters, vol. 79, pp. 943-945, 2001.
[32] S. Young Kim, H. Won Jang, J. Kyu Kim, C. Min Jeon, W. Il Park, G.-C. Yi, and J.-L. Lee, "Low-resistance Ti/Al ohmic contact on undoped ZnO" , Journal of Electronic Materials, vol. 31, pp. 868-871, 2002.
[33] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, "Fabrication of homostructural ZnO p--n junctions and ohmic contacts to arsenic-doped p-type ZnO" , Applied Physics Letters, vol. 83, pp. 4032-4034, 2003.
[34] O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, "Metal-like conductivity in transparent Al:ZnO films" , Applied Physics Letters, vol. 90, pp. 252108-3, 2007.
[35] Z. Q. Li and J. J. Lin, "Electrical resistivities and thermopowers of transparent Sn-doped indium oxide films" , Journal of Applied Physics, vol. 96, pp. 5918-5920, 2004.
[36] V. Bhosle, A. Tiwari, and J. Narayan, "Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO" , Applied Physics Letters, vol. 88, pp. 032106-3, 2006.
[37] T. H. Lee, The Design of CMOS Radio-Freqquency Integrated Circuits, Cambridge University Press, 2nd edition, 2003. ISBN: 0521835399
[38] G. Bergmann, "Weak localization in thin films: a time-of-flight experiment with conduction electrons" , Physics Reports, vol. 107, pp. 1-58, 1984.
[39] R. S. Thompson, D. Li, C. M. Witte, and J. G. Lu, "Weak Localization and Electron−Electron Interactions in Indium-Doped ZnO Nanowires" , Nano Letters, vol. 9, pp. 3991-3995, 2009.
[40] P. V. Chinta, "Magneto-transport and Optical Study of Al-doped ZnO Thin Films" , University of Houston, 2009.
[41] Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, "Metal-insulator transition in Co-doped ZnO: Magnetotransport properties" , Physical Review B, vol. 73, PP. 205342, 2006.
[42] T. Andrearczyk, J. Jaroszyński, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, "Spin-related magnetoresistance of n-type ZnO:Al and Zn_{1−x}Mn_{x}O:Al thin films" , Physical Review B, vol. 72, PP. 121309, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code