Responsive image
博碩士論文 etd-0802113-175919 詳細資訊
Title page for etd-0802113-175919
論文名稱
Title
益生菌經由活化TGF-β/Smads的訊息傳遞路徑降低沙門氏菌所引起的腸道發炎反應
Probiotics attenuated Salmonella-induced Intestinal Inflammation via TGF-β/Smads signaling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-25
繳交日期
Date of Submission
2013-09-02
關鍵字
Keywords
Smads、細胞核轉錄因子、介白素8、乳酸菌、沙門氏菌、轉化生長因子β
Smads, transforming growth factor β, Probiotics, Nuclear Factor-kappa B, IL-8, Salmonella
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1033
The thesis/dissertation has been browsed 5720 times, has been downloaded 1033 times.
中文摘要
人體的腸道內有密集且多樣的微生物菌落,一般正常的腸道菌群包括大約400種不同的細菌種類,包含益生菌(probiotics)及致病菌,這些統稱為片(互?)利共生微生物菌叢(commensal microbiota)。Probiotics在人類營養和健康中具有重要的作用,例如避免致病菌的群聚及維持腸道免疫力。沙門氏菌是台灣夏季常見的病原菌,沙門氏菌感染症狀有噁心、嘔吐、腹痛、腹瀉等,嚴重可能導致死亡,在腸道則會造成淋巴耗損(lymphoid depletion)與壞死性腸炎(necrotizing ileitis)的發生。轉化生長因子β(transforming growth factor-β, TGF-β)磷酸化後經由活化Smad2/3/4蛋白質可增加IκBα(nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor)的生成量,來達到減少細胞核轉錄因子(Nuclear Factor-kappa B, NF-κB)、腫瘤壞死因子(tumor necrosis factor α, TNF-α)及介白素8(interleukin 8, IL-8)的表現,但在發炎時Smad7則會抑制此一路徑,增加NF-κB、TNF-α與IL-8的表現。本研究利用乳酸菌及沙門氏菌模式菌株為實驗材料,配合人類腸癌細胞株(human colon cancer cells, Caco-2)以TGF-β誘發保護之實驗模式,探討probiotics是否透過TGF-β訊息傳遞路徑調控Caco-2細胞之表現而降低沙門氏菌感染所造成的腸道發炎反應。由實驗結果可知,在不同濃度的沙門氏菌感染下,NF-κB在107菌落形成單位(colony-forming unit, CFU)/ml有顯著的活性表現(p<0.01),而probiotics預處理的細胞在有沙門氏菌感染下,其TNF-α及IL-8的表現及NF-κB的活性明顯著地降低(p<0.05),同時,其TGF-β的表現卻明顯地增加(p<0.05)。IκBα在probiotics及益菌素(prebiotics)的預處理後感染組表現量則較僅有沙門氏菌感染組為高,而Smad7在沙門氏菌感染組表現量高於probiotics、prebiotics及合菌素(synbiotics)三組預處理後感染組。另一方面,微型核糖核酸microRNA-21(miR-21)可抑制Smad7蛋白質的合成,達到降低發炎的結果,本研究進一步以miR-21進行分析,觀察其對Smads家族及IL-8訊息路徑之調控作用。由試驗之結果可見,在益生菌的保護效果中,感染組的miR-21分泌量較probiotics及synbiotics預處理後感染組為少。因此,綜合上述之實驗結果發現益生菌能透過增加Caco-2細胞內的TGF-β/IκBα 及miR-21/Smad7的表現而降低NF-κB及IL-8的表現以減緩沙門氏菌所造成的腸道發炎反應。
Abstract
Human intestine contains a dense and diverse community of microorganisms. Normal intestinal microflora comprises an estimated 400 different bacterial species, including probiotics and pathogens; these microbes collectively referred to as the commensal microflora, have an important role in human nutrition and health. Salmonella is a common pathogen during summer in Taiwan. The symptoms of salmonellosis include acute responses, such as nausea, vomiting, abdominal pain, diarrhea, even death, and chronic inflammatory response, such as lymphoid depletion and necrotizing ileitis in the intestine.
TGF-β (Transforming growth factor β)-phosphorizates and activates Smad2/3 to increase IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor), subsequently reduces inflammatory factors, such as NF-κB (Nuclear Factor-kappa B), TNF-α (tumor necrosis factor α) and IL-8 (interleukin 8) expression. Further, Smad 7 negatively regulates TGF-β signaling pathway to augment inflammation. In this study, probiotics (Lactobacillus acidophilus) and Salmonella, and human intestinal Caco-2 cells were employed to investigate how probiotics attenuates Salmonella-mediated intestinal inflammation. The results showed that Salmonella infection induced maximal NF-κB expression and TNF-α secretion at the concentrations of 107 CFU/ml; however, probiotics-pretreated cells had significantly lower TNF-α and NF-κB than those with Salmonella infection alone (p<0.05). They also had relatively higher activity of TGF-β/Samd3/4 (p<0.05). Moreover, IκBα expression in probiotics-pretreated cells was higher than that of S. typhimurium infection alone, but Smad 7 expression was lower in probiotics-pretreated cells. Consistent with Smad7 expression, miR-21, a down-regulator of Smad 7, was significantly higher in probiotics and synbiotics-pretreated cells compared with that of S. typhimurium infection alone. The experimental results showed that probiotics effectively attenuated Salmonella-induced intestinal inflammation in human intestinal Caco-2 cells via TGF-β1/Smads and TGF-β1/miR21 signaling pathway.
目次 Table of Contents
論文審定書1
誌謝3
中文摘要5
Abstract7
Abbreviation9
Introduction10
Materials and Methods13
Results18
Discussion21
Figures and Legend24
Appendix37
References45
參考文獻 References
Benyacoub, J., Rochat, F., Saudan, K.Y., Rochat, I., Antille, N., Cherbut, C., von der Weid, T., Schiffrin, E.J., and Blum, S. (2008). Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J Nutr 138, 123-129.
Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A.A., Rojkind, M., and Bottinger, E.P. (2000). A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 14, 187-197.
Brandtzaeg, P. (2010). The mucosal immune system and its integration with the mammary glands. J Pediatr 156, S8-15.
Chen, C.C., Louie, S., Shi, H.N., and Walker, W.A. (2005). Preinoculation with the probiotic Lactobacillus acidophilus early in life effectively inhibits murine Citrobacter rodentium colitis. Pediatr Res 58, 1185-1191.
Chen, L.W., Chang, W.J., Chen, P.H., Liu, W.C., and Hsu, C.M. (2008). TLR ligand decreases mesenteric ischemia and reperfusion injury-induced gut damage through TNF-alpha signaling. Shock 30, 563-570.
Collins, M.D., and Gibson, G.R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69, 1052S-1057S.
Foye, O.T., Huang, I.F., Chiou, C.C., Walker, W.A., and Shi, H.N. (2012). Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. FEMS Immunol Med Microbiol 65, 467-480.
Gahring, L.C., Heffron, F., Finlay, B.B., and Falkow, S. (1990). Invasion and replication of Salmonella typhimurium in animal cells. Infect Immun 58, 443-448.
Geier, M.S., Butler, R.N., and Howarth, G.S. (2006). Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther 5, 1265-1269.
Gobert, A.P., Coste, A., Guzman, C.A., Vareille, M., Hindre, T., de Sablet, T., Girardeau, J.P., and Martin, C. (2008). Modulation of chemokine gene expression by Shiga-toxin producing Escherichia coli belonging to various origins and serotypes. Microbes Infect 10, 159-165.
Handley, S.A., and Miller, V.L. (2007). General and specific host responses to bacterial infection in Peyer's patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol 64, 94-110.
He, H., Genovese, K.J., Swaggerty, C.L., Nisbet, D.J., and Kogut, M.H. (2013). Nitric oxide as a biomarker of intracellular Salmonella viability and identification of the bacteriostatic activity of protein kinase A inhibitor H-89. PLoS One 8, e58873.
Hedin, C., Whelan, K., and Lindsay, J.O. (2007). Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials. Proc Nutr Soc 66, 307-315.
Hegazy, S.K., and El-Bedewy, M.M. (2010). Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16, 4145-4151.
Hoque, S.S., Faruque, A.S., Mahalanabis, D., and Hasnat, A. (1994). Infectious agents causing acute watery diarrhoea in infants and young children in Bangladesh and their public health implications. J Trop Pediatr 40, 351-354.
Johnson-Henry, K.C., Nadjafi, M., Avitzur, Y., Mitchell, D.J., Ngan, B.Y., Galindo-Mata, E., Jones, N.L., and Sherman, P.M. (2005). Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J Infect Dis 191, 2106-2117.
Letterio, J.J., and Roberts, A.B. (1998). Regulation of immune responses by TGF-beta. Annu Rev Immunol 16, 137-161.
Lomax, A.R., and Calder, P.C. (2009). Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 101, 633-658.
Lotz, M., Menard, S., and Hornef, M. (2007). Innate immune recognition on the intestinal mucosa. Int J Med Microbiol 297, 379-392.
Monteleone, G., Del Vecchio Blanco, G., Palmieri, G., Vavassori, P., Monteleone, I., Colantoni, A., Battista, S., Spagnoli, L.G., Romano, M., Borrelli, M., et al. (2004a). Induction and regulation of Smad7 in the gastric mucosa of patients with Helicobacter pylori infection. Gastroenterology 126, 674-682.
Monteleone, G., Mann, J., Monteleone, I., Vavassori, P., Bremner, R., Fantini, M., Del Vecchio Blanco, G., Tersigni, R., Alessandroni, L., Mann, D., et al. (2004b). A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gut inflammation. J Biol Chem 279, 3925-3932.
Monteleone, G., Pallone, F., and MacDonald, T.T. (2004c). Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol 25, 513-517.
Petrof, E.O., Kojima, K., Ropeleski, M.J., Musch, M.W., Tao, Y., De Simone, C., and Chang, E.B. (2004). Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127, 1474-1487.
Roberfroid, M. (2007). Prebiotics: the concept revisited. J Nutr 137, 830S-837S.
Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., and Matteuzzi, D. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71, 6150-6158.
Sanders, M.E. (2000). Considerations for use of probiotic bacteria to modulate human health. J Nutr 130, 384S-390S.
Sansom, S.E., Nuovo, G.J., Martin, M.M., Kotha, S.R., Parinandi, N.L., and Elton, T.S. (2010). miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells. Am J Physiol Gastrointest Liver Physiol 299, G632-642.
Scholz-Ahrens, K.E., and Schrezenmeir, J. (2007). Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137, 2513S-2523S.
Sougioultzis, S., Simeonidis, S., Bhaskar, K.R., Chen, X., Anton, P.M., Keates, S., Pothoulakis, C., and Kelly, C.P. (2006). Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343, 69-76.
Tien, M.T., Girardin, S.E., Regnault, B., Le Bourhis, L., Dillies, M.A., Coppee, J.Y., Bourdet-Sicard, R., Sansonetti, P.J., and Pedron, T. (2006). Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176, 1228-1237.
Tsolis, R.M., Adams, L.G., Ficht, T.A., and Baumler, A.J. (1999). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67, 4879-4885.
Vitiello, M., D'Isanto, M., Finamore, E., Ciarcia, R., Kampanaraki, A., and Galdiero, M. (2008). Role of mitogen-activated protein kinases in the iNOS production and cytokine secretion by Salmonella enterica serovar Typhimurium porins. Cytokine 41, 279-285.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code