Responsive image
博碩士論文 etd-0802115-131548 詳細資訊
Title page for etd-0802115-131548
論文名稱
Title
高雄地區大氣顆粒態多環芳香烴-污染來源及濃度影響因子
Source identification of atmospheric particulate polycyclic aromatic hydrocarbons in Kaohsiung
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-24
繳交日期
Date of Submission
2015-09-03
關鍵字
Keywords
多環芳香烴、PM2.5、資料群集處理技術、正矩陣分解因子、來源分析
PM2.5, source analysis, PMF, GMDH, PAHs
統計
Statistics
本論文已被瀏覽 5717 次,被下載 32
The thesis/dissertation has been browsed 5717 times, has been downloaded 32 times.
中文摘要
為了瞭解高雄地區懸浮微粒以及多環芳香烴之汙染情形,本研究於2014年1月至2014年12月期間,依照區域型態,分別於海岸地區(NSYSU)、高雄工業區(SG)、交通區(AG)以及住宅區(FS)設置採樣點,藉由採集大氣懸浮微粒(PM2.5、PM2.5-10),並分析其多環芳香烴化合物(PAHs),來探討高雄地區不同區域之污染濃度,進而分析主要污染來源以及濃度影響因子。研究結果顯示四個測站之懸浮微粒年平均濃度(PM2.5、PM2.5-10)皆以SG最高,FS最低,其PM2.5年平均濃度分別為 43.3 ng m-3 (NSYSU)、50.8 ng m-3 (SG)、45.6 ng m-3 (AG)、39.0 μg〖 m〗^(-3) (FS),PM2.5-10年平均濃度分別為16.7 ng m-3 (NSYSU)、18.0 ng m-3 (SG)、16.1 ng m-3 (AG)、15.3 μg〖 m〗^(-3) (FS)。採樣期間大部份之PM2.5濃度皆超過我國空氣品質之日平均規範值,PM10則大都符合規範標準。在PAHs分佈方面,大氣懸浮微粒中之多環芳香烴主要是分佈在PM2.5上,且以高環數的PAH為主,其平均濃度以SG最高、NSYSU最低,濃度分別為 0.91 ng m-3 (NSYSU)、2.36 ng m-3 (SG)、1.87 ng m-3 (AG)、1.27 ng m-3 (FS)。
多環芳香烴來源之綜合分析結果顯示,各測站PM2.5上的多環芳香烴主要來自汽柴油燃燒之交通來源。此外,在SG測站則有比較強的燃煤訊號,FS地區則有天然氣燃燒來源之訊號。不同於PM2.5,PM2.5-10 上NSYSU、AG、FS 是以汽油為主的交通排放來源,SG則是汽油排放及燃煤混和來源。此外,PMF分析結果顯示NSYSU測站PM2.5之主要來源為其柴油混和之交通來源(占61%),SG則是汽柴油來源為主(46%),AG測站主要污染來源為交通排放(46%),FS則是柴油及天然氣混和燃燒來源(51%)。
在模式預測部分,本研究將過去2013年之監測數據利用GMDH模式建模,來驗證及預測採樣期間(2014年)之多環芳香烴濃度,模式效能解析出之大氣中多環芳香烴濃度主要影響因子為PM2.5、PM10、氮氧化物以及雨量,模式效能屬於高準度的預測以及合理的預測,且預測出之季節變化趨勢跟實驗結果相符。
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were analyzed from ambient air particulate matter (PM2.5 and PM2.5–10) at four sampling sites in Kaohsiung city to characterize the spatiotemporal distribution and source identification. Air samples were collected at NSYSU site (coastal area), SG (industrial area), AG (urban area) and FS (residential area) from January to December 2014.
The annual mean concentrations of atmospheric PM2.5 (PM2.5-10) at NSYSU, SG, AG, and FS were 43.3 (16.7), 50.8 (18.0), 45.6 (16.1), and 39.0 (15.3) μg m-3, respectively. The highest concentration of PM2.5 and PM2.5-10 was found at SG, followed by AG, while the lowest one was found at FS. Most samples exceeded the 24-hr air quality standards of PM2.5; while only a few PM10 did not meet the standards. The particle size distribution of PAHs shows that PM2.5 had higher PAHs concentrations than PM2.5–10, and high molecular weight (HMW) PAHs prefer partitioning in PM2.5 as compared to low molecular weight (LMW) PAHs. The annual mean concentration of PM2.5-PAHs at NSYSU, SG, AG, and FS were 0.91, 2.36, 1.87, and 1.27 ng m-3, respectively. It was found that SG had the highest concentration of PM2.5-PAHs, followed by AG, FS, and NSYSU
The results of diagnostic ratios, HCA/PCA and Positive Matrix Factor (PMF) suggested that the major sources of PM2.5-PAHs at four sites were traffic emission from gasoline and diesel engines. In addition, SG site had strong signal from coal combustion and FS site also had signal from natural gas combustion. Unlike PM2.5-PAHs, the main source of PAHs on PM2.5-10 was traffic emission from gasoline engine exhausts in NSYSU, AG and FS sites; gasoline emission and coal combustion mixed sources for SG site.
The PMF results also indicated that the PM2.5-PAH contribution of traffic emission was 61% from gasoline and diesel at NSYSU site, diesel and gasoline burning contributed 46% at SG site, traffic emission accounted for 46% at AG site, and the source mixed with diesel and natural gas combustion was estimated to contribute approximately 51% at FS site.
According to the results of Group Method of Data Handling (GMDH), the PM2.5-PAHs concentration variation was associated with PM2.5, PM10, NOx and rainfall. Model prediction of PM2.5-PAH showed seasonal variation in 2014 was good agreement with measured data.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
圖目錄 x
表目錄 xiii
第一章 前言 1
1-1研究動機 1
1-2研究目的 3
第二章 文獻回顧 4
2-1多環芳香烴介紹 4
2-1-1多環芳香烴特性介紹 4
2-1-2多環芳香烴的來源 7
2-1-3多環芳香烴毒性 8
2-1-4多環芳香烴指紋特徵 10
2-2 正矩陣分解因子 11
2-2-1 PMF基本概述 11
2-2-2 PMF之運算原理 12
2-2-3 EPA PMF v5.0軟體操作介紹 13
2-3 資料群及處理技術 17
2-3-1 資料群集處理技術(GMDH)概述 17
2-3-2 GMDH演算法之基本參數設定與說明 19
第三章 研究方法 21
3-1研究流程 21
3-2材料與儀器 22
3-2-1 材料 22
3-2-2試藥及器具前處理 22
3-3-2設備與分析儀器 23
3-3採樣與保存 22
3-3-1採樣時間與地點 25
3-3-3採樣方法 26
3-4樣品分析 27
3-5品保及品管(QA/QC) 29
3-5-1空白實驗 29
3-5-2方法偵測極限 29
3-5-3擬似標準品回收率 29
3-6資料分析 31
3-6-1主成分分析法(Principal Component analysis, PCA) 31
3-6-2階層群集方法(Hierarchical Cluster Analysis, HCA) 31
3-6-3正矩陣分解因子 (Positive Matrix Factor) 31
3-6-4資料群集處理技術 (Group Method of Data Handling, GMDH) 32
第四章 結果與討論 33
4-1大氣中懸浮微粒濃度 33
4-1-1懸浮微粒濃度空間分布 33
4-1-2懸浮微粒濃度時間分布 38
4-2大氣中多環芳香烴濃度 44
4-2-1多環芳香烴時空濃度變化 44
4-2-2 PM2.5及PM2.5-10上多環芳香烴濃度分布 47
4-2-3懸浮微粒與PAHs之關係 59
4-3來源分析 60
4-3-1化學指紋特徵 60
4-3-2主成分分析 (Principal Component Analysis, PCA) 67
4-3-3階層群集分析 (Hierarchical Cluster Analysis, HCA) 76
4-3-4正矩陣分解因子(Positive Matrix Factor) 87
4-4大氣中多環芳香烴毒性當量因子及健康風險評估 94
4-4-1大氣中BaP濃度之時空變化 94
4-4-2大氣中BaPeq濃度之時空變化 97
4-5 資料群集處理技術(Group Method of Data Handling, GMDH) 109
4-5-1多環芳香烴預測結果分析 109
4-5-2實際案例預測結果 112
第五章 結論與建議 115
5-1 結論 115
5-2 建議 116
參考文獻 118
附錄 123
參考文獻 References
參考文獻
Akyüz, M., Çabuk, H., 2010. Gaseparticle partitioning and seasonal variation of
polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 408, 5550-5558.
Bjorseth, A.a.R., T. (1985) Source and Emission of PAH, Handbook of Polycyclic Aromatic Hydrocarbons,, Marcel Dekkerr, Inc., New York and Basel.
Brändli, R.C., Bucheli, T.D., Ammann, S., Desaules, A., Keller, A., Blum, F., et al., 2008.Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. J. Environ. Monit. 10, 1278-1286.
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Zhang, R. (2015). PM2.5 and PM2.5-10 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96-104.
Chiang, T.A., Wu, P.F. and Koi, Y.C. (1999) Identification of carcinogens in cooking oil fumes. Environmental Research 81(1), 18-22.
Chiang, T.A., Wu, P.F., Koi, Y.C. (1999) Identification of carcinogens in cooking oil fumes. Environment. Res. 81, 18-22.
Dejean, S., Raynaud, C., Meybeck, M., Della Massa, J.-P., and Simon, V., 2009. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area: monitoring on various types of sites. Environmental Monitoring and Assessment, 148(1): 27-37.
Dickhut, R.M., Canuel, E.A., Gustafson, K.E., Liu, K., Arzayus, K.M., Walker, S.E., et al., 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ. Sci. Technol. 34, 4635-4640.
De La Torre-Roche, R.J., Lee, W.Y., Campos-Díaz, S.I., 2009. Soil-borne polycyclicaromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J. Hazard. Mater. 163, 946-958.
Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H., . . .
Mulawa, P. A. (2006). Concentration and chemical characteristics of PM2.5
in Beijing, China: 2001-2002. Sci Total Environ, 355(1-3), 264-275.
Gao, B., Guo, H., Wang, X.-M., Zhao, X.-Y., Ling, Z.-H., Zhang, Z., Liu, T.-Y., 2012. spatiotemporal patterns and emission sources. J. Hazard. Mater. Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China:
239-240,78-87.
Grimmer (1983) Environmental carcinogens: polycyclic aromatic hydrocarbons.
Environ. Sci. Technol. 24, 1581-1588.
Guo, H., Lee, S.C., Ho, K.F., Wang, X.M., Zou, S.C., 2003. Particle-associated polycyclicaromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 37, 5307-5317.
Guo, Z., Lin, T., Zhang, G., Hu, L., Zheng, M., 2009. Occurrence and sources of
polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in the roadside
environment of a major city in China. J. Hazard. Mater. 170, 888-894.
Ho, K.F., Lee, S.C., Chiu, G.M.Y., 2002. Characterization of selected volatile
organic compounds, polycyclic aromatic hydrocarbons and carbonyl
compounds at a roadside monitoring station. Atmos. Environ. 36, 57-65.
Ivakhnen.Ag, 1971. Polynomial theory of complex systems. Ieee Transactions
on Systems Man and Cybernetics, SMC1(4): 364
Khalili, N.R., Scheff, P.A., Holsen, T.M., 1995. PAH source fingerprints for coke ovens,diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 29, 533-542.
Khairy, M. A., & Lohmann, R. (2013). Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 91(7), 895-903.
Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment, 106, 178-190.
Lai, I. C., Lee, C.-L., Zeng, K.-Y., & Huang, H.-C. (2011). Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manage, 92(8), 2029-2037.
Lewis, C.D., 1982. Industrial and business forecasting methods : a practical guide to exponential smoothing and curve fitting / Colin D. Lewis. Butterworth Scientific, London.
Li, R.-J., Kou, X.-J., Geng, H., Dong, C., & Cai, Z.-W. (2014). Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan. Chinese Chemical Letters, 25(5), 663-666.
Liu, G. R., Peng, X., Wang, R. K., Tian, Y. Z., Shi, G. L., Wu, J. H., Feng, Y. C. (2015). A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China. J Hazard Mater, 283, 462-468.
Lv, J., Xu, R., Wu, G.P., Zhang, Q.H., Li, Y.M., Wang, P., Liao, C.Y., Liu, J.Y., Jiang, G.B. and Wei, F.S. (2009) Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. Journal of Environmental Monitoring 11(7), 1368-1374.
Manoli, E., Kouras, A., Samara, C., 2004. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56, 867-878.
Miguel, A.H., Kirchstetter, T.W., Harley, R.A., Hering, S.V., 1998. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ. Sci. Technol. 32, 450-455.
Okuda, T., Okamoto, K., Tanaka, S., Shen, Z., Han, Y., & Huo, Z. (2010). Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi'an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Sci Total Environ, 408(8), 1909-1914.
Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T.A., Hofmann, T., 2008. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72, 1594-1601
Ravindra, K., Marty, J.C., Saliot, A., Aparicio, X., Grimalt, J. and Albaiges, J. (1987) Aliphatic and aromatic-hydrocarbons in different sized aerosols over the Mediterranean-sea –occurrence and origin.Atoms.Environ. 21(10),2247-2259.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simonelt, B.R.T., 1993.Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallicbrake lining dust: roads as sources and sinks. Environ. Sci. Technol. 27,1892-1904.
Sarkar, S., Khillare, P.S., 2013. Profile of PAHs in the inhalable particulate fraction: source apportionment and associated health risks in a tropical megacity. Environ. Monit. Assess. 185, 1199-1213.
Sicre, M.A., Marty, J.C., Saliot, A., Aparicio, X., Grimalt, J., Albaiges, J., 1987. Aliphaticand aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos. Environ. 21, 2247-2259.
Tolis, E. I., Saraga, D. E., Lytra, M. K., Papathanasiou, A. C., Bougaidis, P. N., Prekas-Patronakis, O. E., . . . Bartzis, J. G. (2015). Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area. Atmospheric Environment, 113, 197-207.
Venkataraman, C., Friedlander, S.K., 1994. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Environ. Sci. Technol. 28, 563-572.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y., . Huang, C. (2015). Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. Journal of Cleaner Production.
Witt, G. (1995) Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar. Pollut. Bull. 31(4-12), 237-248.
Wu, Y., Yang, L., Zheng, X., Zhang, S., Song, S., Li, J., & Hao, J. (2014). Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci Total Environ, 470-471, 76-83.
Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D.,
Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAHratios as indicators of PAH source and composition. Org. Geochem. 33, 489-515
江 涵 (2014) 高雄地區大氣懸浮微粒上多環芳香烴濃度之時空變化,國立中山大學海洋環境及工程學系碩士論文
李郁惠 (2005) 愛河及前鎮河水體中多環芳香烴含量分佈之研究, 國立中山大學海洋環境及工程學系研究所碩士論文
巫學倉 (2013) 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2013年台灣鹿林山氣膠來源解析,國立中央大學環境工程研究所碩士論文
邱國洋 (2010) 以資料群集處理技術(GMDH)探討高雄近岸大氣多環芳香烴濃度影響因子之研究,國立中山大學海洋環境及工程學系碩士論文
林楷為,2008,應用資料分析技術於國家公園棲地環境評估,國立中山大學海洋環境及工程學系研究所碩士論文
曾堃衍 (2008) 高雄近岸測站大氣中多環芳香烴化合物濃度與來源之季節性變化,國立中山大學海洋環境及工程學系研究所碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code