Responsive image
博碩士論文 etd-0802115-143431 詳細資訊
Title page for etd-0802115-143431
論文名稱
Title
南台灣工業都市及背景地區高污染期間 大氣汞成份之時空分佈及污染源解析
Temporospatial Distribution and Source Identification of Atmospheric Speciated Mercury in an Industrial City and Its Background Area in Southern Taiwan during Highly Polluted Periods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-09-02
關鍵字
Keywords
時空分佈、氣固相分佈、大氣汞採樣、南台灣地區、污染傳輸路徑、相關性分析
Southern Taiwan, atmospheric mercury sampling, gas and solid partition, spatiotemporal distribution, transportation routes, correlation analysis
統計
Statistics
本論文已被瀏覽 5687 次,被下載 47
The thesis/dissertation has been browsed 5687 times, has been downloaded 47 times.
中文摘要
高雄為台灣的工業重鎮,其所排放的大量空氣污染物對於高屏地區影響甚大,而含汞污染物也名列其中。近年來,中國大陸工業發展迅速,蓬勃的工業活動消耗大量的能源,並導致含汞污染物排放至大氣中。此外,東南亞地區為全球主要生質燃燒發生地區,大面積的露天燃燒產生大量含汞污染物逸散至大氣中,於冬、春季期間,季風挾帶著含汞污染物進行跨境長距離傳輸。台灣位於亞洲季風區之下風處,污染物經由冷熱氣團交會造成下洗或以乾濕沉降等機制降至地表及水域中,透過疊加效應使得台灣地區的空氣品質受到不良影響。
職是之故,本研究採用行政院環境檢驗所公告之「空氣中汞檢測方法-冷蒸氣原子螢光光譜儀法」(NIEA A304.10C) (即為美國國家環境保護局公告之IO-5),於秋、冬高污染季節,分別於南台灣高屏地區之工業區、都會區及背景區等三處不同型態區域之採樣站,執行大氣中總氣態汞(TGM)、氣態氧化汞(GOM)與顆粒汞(PHg) 同步量測與分析,藉以瞭解高污染季節南台灣地區大氣汞時空分佈趨勢。配合NOAA-HYSPLIT Model 逆軌跡模式與全球火點分佈圖(Global Fire Map)進行污染氣團傳輸路徑與污染源推估,並且與氣象參數及其他空氣污染物進行相關性分析與探討。此外,本研究亦蒐集世界各國不同型態採樣站之大氣汞量測值加以比較分析。由各測站大氣汞量測結果得知,冬、春季高污染期間,南台灣高屏地區大氣汞濃度季節變化以冬季高於春季為主要趨勢,若單就各站大氣汞污染物濃度而言,高雄前金及小港站為冬季>春季;而屏東車城站為春季>冬季。本研究採樣期間,
GEM、GOM 及PHg 濃度範圍分別為1.25~11.85 ng/m3,7.17~497.19 pg/m3及0.02~1.16 ng/m3。另就空間分佈而言,冬、春兩季皆為高雄小港>高雄前金>屏東車程。大氣汞氣固相分佈則以TGM(GEM+GOM)為主要成份,TGM 及PHg 分別佔97.01~87.82%和2.99~12.18%。此結果顯示,高雄地區大氣汞濃度受到工業型排放影響甚大,而屏東車城地區則屬於都會型排放之影響。此外,GOM 佔總大氣汞濃度比例由高至低依序為高雄小港(1.67%)>屏東車程(1.34%)>高雄前金(1.23%),由此可知,高雄小港地區的工業排放使得當地GOM 濃度較高,而屏東車城位於高雄的下風處,將上風處污染物傳輸至此地區,且春季期間當地亦發現生質燃燒情形,對於大氣汞污染物具有一定程度的貢獻量。由本研究所繪製之逆軌跡傳輸路徑及東亞地區火點分佈圖顯示,冬季採樣期間,污染氣團由中國大陸華北及東北地區向南傳輸,污染氣團夾雜著含汞污染物藉由東北季風傳送至南台灣地區。而春季採樣期間的污染氣團傳輸路徑則有些微改變,高雄前金及小港地區之污染氣團主要來自中國大陸北方,但受到北方高壓影響,氣團傳輸路徑先出海後再迴流向南傳輸;而屏東車城地區的氣團傳輸路徑則主要來自東南方海面。
另與台灣及世界各主要都市大氣汞濃度比較得知,台灣地區大氣汞濃度的分佈與都會區及工業區的密集度有甚大的關聯性,工業活動越密集的區域,大氣汞污染程度有越嚴重的趨勢,與東亞地區各國比較,高屏地區的大氣汞濃度普遍低於中國大陸城市,但比日本、韓國及歐美城市要來得嚴重,而歐美地區由於大氣汞的監測技術與相關研究較亞洲地區發展得早,對於大氣汞的相關管制策略也相對成熟;因此,歐美地區的大氣汞濃度相較於亞洲及地區要來得低。
Abstract
Kaohsiung, an industrial city with a large amount of air pollution emission,including mercury-containing pollutants, which has great impact on the ambient air quality of Kaohsiung-Pingtung region. In recent years, rapid industrial development in China and the blooming industrial activities consumed a lot of energy, resulting in mercury-containing pollutants emitted to the atmosphere. In addition, Southeast Asia is the one of main regions burning biomass in the world, where open burning activities contribute to regional mercury emissions. In winter and spring, monsoon entrainment with mercury contaminants is long-range transported to the downwind region. Taiwan is located at the downwind of the Asian monsoon region, the dry and wet deposition mechanisms and the intersection of cold and warm fronts caused downwash which make air pollutants deposit down to the lands and waters. Superimposition mechanisms result in the deterioration of ambient air quality in Taiwan.
Accordingly, to understand the spatiotemporal distribution of atmospheric mercury pollution in southern Taiwan, this study applied “Mercury in Air Detection Method - Cold Vapor Atomic Fluorescence Spectrometry Method” (NIEA A304.10C) adopted from Method IO-5 of United States Environmental Protection Agency to sample and analyze atmospheric mercury in winter and spring seasons, the highest polluted seasons. Field measurement of GEM, GOM, and PHg were conducted at three sampling sites, representing metropolitan, industrial, and background regions, respectively, in southern Taiwan.
In order to determine the transportation routes of air masses, this study applied the NOAA-HYSPLIT Model, Global Fire Map, and integrated meteorological parameters correlation for discussion. In addition, this study reviewed previousliterature of atmospheric mercury concentrations measured in other countries for further comparative analysis.
Field measurement results showed that, during the highly polluted periods, the
concentrations of atmospheric mercury in the Kaohsiung and Pingtung areas of southern Taiwan in winter were higher than those in spring. Particularly, Qianjin and Xiaogang sites had higher atmospheric mercury concentrations in winter than those in spring, while an opposite trend was observed at the Checheng site. During the investigation period, GEM, GOM, and PHg concentrations were in the range of 1.25~11.85 ng/m3, 7.17~497.19 pg/m3, and 0.02~1.16 ng/m3, respectively. The temporal distribution of atmospheric mercury concentration showed that Xiaogang (industrial) > Qianjin (urban) > Checheng (background). The main species of atmospheric mercury was TGM (GEM+GOM) which apportioned as 97.01~87.82% and PHg apportioned as 2.99~12.18% of TAM. These results indicated that atmospheric mercury concentrations were mainly influenced by industrial emissions which are abundant in Kaohsiung, while atmospheric mercury concentrations in Pingtung were influenced by metropolitan emission. Furthermore, the spatial distribution of GOM concentration was ordered as: Xiaogang (1.66%) > Checheng (1.26%) > Qianjin (1.22%). It was observed that the industrial emissions contributed to higher GOM concentration in Kaohsiung, while Pingtung is located at the downwind site of Kaohsiung, where air pollutants could be transported by monsoons or local winds from the upwind areas. Moreover, biomass burning frequently
occurring in spring also contributed high concentration of atmospheric mercury at the
Checheng site.
Backward trajectories and global fire map both showed that polluted air
masses containing mercury contaminants were blown from the northern and
northeastern China toward the southern Taiwan by the northeastern Monsoons. Duringthe spring sampling period, the transportation routes of polluted air mass changed slightly, where Xiaogang and Qianjin came mainly from the northern China and influenced by the high pressure system covering the Northeast Asia. The air masses were transported to the East China Sea and then moved a large-scale circulation of wind (anticyclone) southward, while the transportation routes of polluted air mass at Checheng came mainly from the southeastern ocean region. Compared with other cites, the atmosphere mercury concentration measured in southern Taiwan were relatively higher due to densely industrial activities. Further compared with other East Asian countries, the atmospheric mercury concentrations in Kaohsiung and Pingtung were generally lower than China, but higher than Japan, Korea as well as European and American countries, since the development of mercury sampling and abatement technologies in Europe and America were much earlier and thus more advanced than those in Asia. Therefore, the atmospheric mercury concentrations in Asia were mostly higher than those in Europe and North America.
目次 Table of Contents
審定書………………….........................…………………………………………………………….i
謝誌…………………………………….……...............…………………………..........................ii
摘要………………...........................……….....................................................................iii
目錄……………..........………………………....................................................................viii
表目錄………………………………………….....................................................................xi
圖目錄…………………………………………………………........................................................xii
第一章 前言……………………………………………………….............................................................1
1-1 研究緣起…………………………………………....………….............................................1
1-2 研究目的……………………………………………....………............................................ 2
1-3 研究範圍與架構………………………………………....…................................................2
第二章 文獻回顧……………………………………………...…...............................................5
2-1 汞之背景介紹.……………….……………………………..................................................5
2-1-1 汞的基本特性………………………………………........................................................5
2-1-2 大氣汞的型態及組成成份…………………………….....................................................6
2-1-3 大氣汞的來源及循環………………………………….....................................................9
2-2 汞的健康風險………………………………………………...............................................12
2-2-1 汞的暴露危害標準……………………………………...................................................12
2-2-2 汞的毒性與危害性……………………………………...................................................14
2-3 大氣汞量測方法……………………………………………...............................................17
2-3-1 大氣汞量測技術演進…………………………………...................................................17
2-3-2 不同型態大氣汞採樣及分析方法……………………...................................................18
2-4 逆軌跡模式之原理與應用…………………………………...............................................22
2-4-1 逆軌跡模式之原理……………………………………...................................................22
2-5-2 逆軌跡模式之應用……………………………………...................................................23
2-6 國內外大氣汞相關研究……………………………………...............................................24
第三章 研究方法………………………………………………….............................................33
3-1 大氣汞採樣規劃……………………………………………...............................................33
3-1-1 採樣地點規劃…………………………………………...................................................33
3-1-2 採樣時間規劃…………………………………………...................................................33
3-2 大氣汞採樣方法……………………………………….……..............................................34
3-2-1 TGM、GOM 及PHg 採樣前處理步驟………………..................................................35
3-2-2 TGM 採樣步驟………..………………………………..................................................39
3-2-3 GOM 量測步驟....………..……………..……………..................................................41
3-2-4 PHg 量測步驟....………..…………………………....……...........................................43
3-3 大氣汞分析方法與步驟………………………………….…..............................................44
3-3-1 TGM分析方法與步驟…………………………………..................................................45
3-3-2 GOM 分析方法與步驟………………………………....................................................47
3-3-3 PHg 分析方法與步驟……………..…………………....…............................................47
3-4 大氣汞採樣及分析之品保與品管(QA/QC)………………............................................... 48
3-5 冷蒸氣原子螢光光譜儀……………………………………...............................................52
3-6 污染源解析方法……………………………………………...............................................53
3-6-1 逆軌跡模式…………………………………………............................................….......53
3-6-2 全球火點分佈圖………………………………………...................................................54
第四章 結果與討論……………………………………………….............................................56
4-1 高屏地區氣象條件分析…………………………………...…............................................56
4-1-1 風速與風向…………….…………………………......……............................................56
4-1-2 濕度與降雨量………………...………………………....…............................................59
4-2 TGM 與GOM 驗證與測試………………………………..…............................................60
4-2-1 金汞齊吸附管空白測試...……………………………...................................................60
4-2-2 金汞齊吸管穿透率實驗...……………………………...... ............................................61
4-2-3 石英擴散管吸附試驗…………………………………...................................................61
4-3 高屏地區大氣汞時空分佈……..…..………………….....................................................62
4-3-1 台灣高屏地區GEM、GOM及PHg之時間分佈…..…..................................................63
4-3-2 台灣高屏地區氣固相分佈…………………….…..…...................................................67
4-3-3 台灣高屏地區GEM、GOM及PHg之空間分佈…..…..................................................69
4-4 南台灣高屏地區大氣汞污染源解析………………………...............................................70
4-4-1 污染氣團傳輸路徑分析………………………………...................................................71
4-4-2 全球火點監測分析……………………………………...................................................74
4-4-3 大氣汞濃度、氣象參數及空氣污染物之相關性………………………………………….....80
4-5 高屏地區大氣汞濃度與台灣及世界主要城市比較………. ..………………………………….83
第五章 結論與建議………………………………………………..………………………………….90
5-1 結論………………………………………………………………………………………………..90
5-2 建議……………………………………………………………………………….………….......92
參考文獻…………………………………………………………...………………………………....94
附錄A 汞標準品體積與溫度關係……………………………................................................109

表目錄 頁次
表 2-1 汞及其化合物之物理及化學特性………….............................................……………...5
表 2-2 汞於環境中的反應………………………………………….………………………………….8
表 2-3 建議容許汞吸入劑量標準…………..…………………….………………………………….13
表 2-4 大氣汞之採樣及分析方法總覽……………………………...........................................19
表 2-5 空氣中GOM 檢測方法比較表……………………………............................................22
表 3-1 高屏地區大氣汞採樣站環境描述彙整表…………………...........................................34
表 3-2 GEM 檢量線製備濃度及差異百分比……………………............................................49
表 3-3 GOM & PHg 檢量線製備濃度及差異百分比………...…...........................................50
表 4-1 採樣期間各站相對濕度及雨量彙整表………..…………............................................60
表 4-2 金汞齊吸附管空白測試結果彙整表..……………………............................................61
表 4-3 金汞齊吸附穿透率測試結果彙整表…………..…………............................................61
表 4-4 GOM石英擴散管空白試驗結果彙整表………... ...……….........................................62
表 4-5 GOM石英擴散管穿透試驗結果彙整表………... ...……….........................................62
表 4-6 本研究採樣期間各月大氣汞濃度彙整表……..........…..............................................66
表 4-7 氣態氧化汞佔總大氣比例…………………………………...........................................69
表 4-8 前金站大氣汞濃度、氣象參數與各污染物相關性彙整表...........................................81
表 4-9 小港站大氣汞濃度、氣象參數與各污染物相關性彙整表...........................................82
表 4-10 車城站大氣汞濃度、氣象參數與各污染物相關性彙整表.........................................83
表 4-11 高屏地區與台灣及世界各國大氣汞濃度比較…………….........................................88
表 4-12 高屏地區與台灣及世界各國大氣汞濃度比較(續)………..........................................89
表 4-13 高屏地區與台灣及世界各國大氣汞濃度比較(續)………..........................................90
表 A-1 汞標準品體積與溫度關係表……………………………........................................…111
表 A-2 汞標準品體積與溫度關係表………….……..………........................................…....113

圖目錄 頁次
圖 1-1 研究架構流程圖………………………………………..........................................…...…4
圖 2-1 2010 年人為排放源之排放量相對分佈……………….........................................……10
圖 2-2 2010 年全球大氣汞排放量分佈圖……………………….........................................…11
圖 2-3 大氣汞循環示意圖……………………………………...........................................……12
圖 2-4 汞對於人體健康之影響…………………………...........................................…………16
圖 2-5 1990-2005 年全球大氣汞預估人為源排放量…...…........................................………25
圖 2-6 四個研究區域及全球總汞排放源……………………..........................................…….25
圖 2-7 不同因子污染物濃度貢獻率………………………...........................................………27
圖 2-8 首爾及春川市冬季期間逆軌跡圖…………………...........................................………29
圖 2-9 首爾及春川市夏季期間逆軌跡圖……………………...........................................……29
圖 2-10 亞洲地區火點分佈圖……………………………..……..........................................…31
圖 3-1 高屏地區大氣汞採樣站位置圖…..…………………..….........................................….34
圖 3-2 大氣汞(含TGM及PHg)量測裝置示意圖與實體圖……............................................…35
圖 3-3 金汞齊吸附管…………...……………………………..........................................…….37
圖 3-4 採集GOM 之環形擴散管…….………………………………………………………………37
圖 3-5 KCl 擴散管於管狀爐進行熱脫附…......…………………………………………………….39
圖 3-6 PHg 採樣用之開放式濾紙匣實體……...…………………………………………….....…..44
圖 3-7 汞標準氣體產生氣與專用氣針………. …………………….........................................46
圖 3-8 元素汞標準品檢量線(GEM 濃度適用)……….…………….........................................49
圖 3-9 元素汞標準品檢量線(GOM & PHg 濃度適用)…………….........................................50
圖 3-10 冷蒸氣原子螢光光譜儀(CVAFS)………………………….........................................53
圖 3-11 HYSPLIT 網站…………..………………………………….........................................54
圖 3-12 全球火點分佈圖(FIRMS Web Fire Mapper)………….............................................55
圖 4-1 冬季前金站風玫圖…………………………..……………............................................57
圖 4-2 冬季小港站風玫圖…………………………………………...........................................57
圖 4-3 冬季車城站風玫圖…………………………………………...........................................57
圖 4-4 冬季前金站風速分佈圖………………….....……………............................................57
圖 4-5 冬季小港站風速分佈圖…………………………….…….............................................57
圖 4-6 冬季車城站風速分佈圖…………………………….…….............................................57
圖 4-7 春季前金站風玫圖………………………………….…….............................................58
圖 4-8 春季小港站風玫圖……………………………………...…...........................................58
圖 4-9 春季小港站風玫圖…………………………………..……............................................58
圖 4-10 春季前金站風速分佈圖….………………………………...........................................58
圖 4-11 春季前金站風速分佈圖…………………………………….........................................58
圖 4-12 春季前金站風速分佈圖………………………...………….........................................58
圖 4-13 南台灣高屏地區GEM、GOM 及PHg 濃度之季節變化........................................…64
圖 4-14 採樣期間高雄前金站不同型態大氣汞濃度逐日變化趨勢圖………..……………………65
圖 4-15 採樣期間高雄小港站不同型態大氣汞濃度逐日變化趨勢圖......................................65
圖 4-16 採樣期間屏東車城站不同型態大氣汞濃度逐日變化趨勢圖….........................………65
圖 4-17 大氣汞氣固相分佈比例…………………………...……….........................................68
圖 4-18 南台灣高屏地區大氣汞濃度空間………...……………….........................................72
圖 4-19 冬季高雄前金污染玫瑰圖………………………………….........................................73
圖 4-20 冬季高雄小港污染玫瑰圖………..………………………..........................................73
圖 4-21 冬季屏東車城污染玫瑰圖……………………..…………..........................................73
圖 4-22 春季高雄前金污染玫瑰圖……………………………..…..........................................73
圖 4-23 春季高雄小港污染玫瑰圖………………..………………..........................................73
圖 4-24 春季屏東車城污染玫瑰圖…………………………..……..........................................73
圖 4-25 高雄前金12 月逆軌跡圖…………………….........................................……………..75
圖 4-26 高雄小港12 月逆軌跡圖………………………….........................................………..75
圖 4-27 屏東車城12 月逆軌跡圖………………………….........................................………..75
圖 4-28 高雄前金1 月逆軌跡圖……………….……….…….........................................……..75
圖 4-29 高雄小港1 月逆軌跡圖…………………………..….........................................……..75
圖 4-30 屏東車城1 月逆軌跡圖…………..………………………...........................................75
圖 4-31 高雄前金2 月逆軌跡圖……..……………………………...........................................76
圖 4-32 高雄小港2 月逆軌跡圖……..……………………………...........................................76
圖 4-33 屏東車城2 月逆軌跡圖……………..……………………...........................................76
圖 4-34 高雄前金3 月逆軌跡圖..…………………………………...........................................76
圖 4-35 高雄小港3 月逆軌跡圖……..……………………………...........................................76
圖 4-36 屏東車城3 月逆軌跡圖……..……………………………...........................................76
圖 4-37 高雄前金4 月逆軌跡圖..…………………………………...........................................77
圖 4-38 高雄小港4 月逆軌跡圖…………………..………………...........................................77
圖 4-39 屏東車城4 月逆軌跡圖………………………………….............................................77
圖 4-40 高雄前金5 月逆軌跡圖………………………………….............................................77
圖 4-41 高雄小港5 月逆軌跡圖……..……………………………...........................................77
圖 4-42 屏東車城5 月逆軌跡圖……………………………..……...........................................77
圖 4-43 冬季期間高雄前金站污染氣團傳輸路徑百分比與濃度分佈…………………...............78
圖 4-44 冬季期間高雄小港站污染氣團傳輸路徑百分比與濃度分佈………………………..…...78
圖 4-45 冬季期間屏東車城站污染氣團傳輸路徑百分比與濃度分佈.…...............……………..78
圖 4-46 春季期間高雄前金站污染氣團傳輸路徑百分比與濃度分佈………….……………........79
圖 4-47 春季期間高雄小港站污染氣團傳輸路徑百分比與濃度分佈……………………………..79
圖 4-48 春季期間屏東車城站污染氣團傳輸路徑百分比與濃度分佈……………………............79
圖 4-49 大氣汞採樣期間亞洲地區火點分佈圖…………………….........................................80
參考文獻 References
Agency for Toxic Substances and Disease Registry, “Toxicological profile for asbestos,” US Department of Health and Human Services, 2001.
Aberg, B., Ekman, L., Falk, R., Greitz, U., Persson, G., and Snihs, J.O., “Metabolism of methylmercury (203Hg) compounds in man,” Arch. Environ. Health, 19(4), 478-484, 1969.
Ariya, P.A., Sun, J., Eltouny, N.A., Hudson, E.D., Hayes, C.T., and Kos, G., “Physical and chemical characterization of bioaerosols – Implications for nucleation processes,” Int. Rev. Phys. Chem., 28(1), 1-32, 2009.
Biswajit, P. and Ariya, P.A., “Gas-phase HO·initiated reactions of elemental mercury: Kinetics, product studies, and atmospheric implications,” Environ. Sci. Technol., 38, 5555-5566, 2004.
Bloom, N.S. and Fitzgerald, W.F., “Determination of volatile mercury species at the pictogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection,” Anal. Chim. Acta, 208, 151-161, 1988.
Brown, R.J.C., Goddard, S.L., Butterfield, D.M., Brown, A.S., Robins, C., Mustoe, C.L., and McGhee, E.A., “Ten years of mercury measurement at urban and industrial air quality monitoring stations in the UK,” Atmos. Environ., 109, 1-8, 2015.
Cairns, E., Tharumakulasingam, K., Athar, M., Yousaf, M., Cheng, I., Huang, Y., Lu, J., and Yap, D., “Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada,” Environ. Pollut., 159, 2003-2008, 2011.
Chan, C.C.Y. and Sadana, R.S., “Automated determination of mercury at ultra-level in waters by gold amalgam preconcentration and cold vapour atomic fluorescence spectrometry,” Anal. Chim. Acta, 282, 109-115, 1993.
Cheng, H. and Hu, Y., “China needs to control mercury emissions from municipal solid waste (MSW) incineration,” Environ. Sci. Technol., 44, 7994-7995, 2010.
Cheng, I., Zhang, L., Mao, H., Blanchard, P., Rob, T., and Dalziel, J., “Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site,” Atmos. Environ., 82, 193-205, 2014.
Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies, and Toxicology, National Research Council, “Toxicological Effects of Methylmercury,” 2000.
Compeau, G.C. and Bartha, R., “Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment,” Appl. Environ. Microbiol., 50(2), 498-502, 1985.
Choi, H.D., Huang J., Mondal, S., and Holsen, T.M., “Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State,” Sci. Total Environ., 448, 96-106, 2013.
Donohoue, D.L., Bauer D., and Hynes, A.J., “Temperature and pressure dependent rate coefficients for the reaction of Hg with Cl and the reaction of Cl with Cl: a pulsed laser photolysis-pulsed laser induced fluorescence study,” J. Phys. Chem., 109, 7732-7741, 2005.
Drasch, G., Schupp, I., Htfl, H., Reinke, R., and Roider, G., “Mercury burden of human fetal and infant tissues,” Eur. J. Pediatr., 153, 607-610, 1994.
Durnford, D., Dastoor, A., Figueras-Nieto, D., and Ryjkov, A., “Long range transport of mercury to the Arctic and across Canada,” Atmos. Chem. Phys., 10, 6063-6086, 2010.
Ebdon, L. and Wilkinson, J. R., “Determination of sub-nanogram amounts of mercury by cold-vapour atomic fluorescence spectrometry with an improved gas-sheathed atom cell,” Anal. Chim. Acta, 128, 45-55, 1981.
Engle, M.A., Gustin, M.S., Lindberg, S.E., Gertler, A.W., and Ariya, P.A., “The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates,” Atmos. Environ., 39, 7506-7517, 2005.
Fawer, R.F., Ribaupierre, Y.D., Guillemin, M.P., Berode, M., and Lob, M., “Measurement of hand tremor induced by industrial exposure to metallic mercury,” Br. J. Ind. Med., 40, 204-208, 1983.
Feng, X.B., Sommar, J.G., and Gardfeldt, K., “Improved detection of gaseous divalent mercury in ambient air using KCl coated denuders,” Anal. Bioanal. Chem., 366, 423-428, 2000.
Ferrara, R., Seritti, A., Barghiani, C., and Petrosino, A., “Improved instrument for mercury determination by atomic fluorescence spectrometry with a high-frequency electrodeless discharge lamp,” Anal. Chim. Acta, 117, 391-395, 1980.
Fitzgerald, R.A., Donald, C., Gorden, J.R., and Cranstone R.E., “Total mercury in sea water in the northwest Atlantic Ocean,” Deep-Sea Rese., 21, 139-144, 1974.
Fitzgerald, W.F. and Gill, G.A., “Sub-nanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem., 15, 1714, 1979.
Fitzgerald, W.F., Lamborg, C.H., and Hammerschmidt C. R., “Marine biogeochemical cycling of mercury,” Chem. Rev., 107, 641-662, 2007.
Food and Agriculture Organization of the United Nations (FAO), “State of the world’s forests 2007,” Electronic Publishing Policy and Support Branch Communication Division, Rome, 2007.
Friberg, L., “International programme on chemical safety,” World Health Organization, 1991.
Fu, X.W., Feng, X.B., Dong, Z.Q., Yin, R.S., Wang, J.X., Tang, Z.R., and Zhang, H., “Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China,” Atmos. Chem. Phys., 9, 23465–23504, 2010.
Fu, X.W., Feng, X.B., Wang, S., Rothenberg, S., Shang, L., Li, Z., and Qiu, G., “Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: Implications for industrial and domestic mercury emissions in remote areas in China,” Sci., 2306-2314, 2009.
Fu, X.W., Feng, X., Liang P., Deliger, Zhang, H., Ji, J., and Liu, P., “Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China,“ Atmos. Chem. Phys., 12, 1951-1964, 2012.
Gilmour, C.C., Henry, E.A., and Mitchell, R., “Sulfate stimulation of mercury methylation in freshwater sediments,” Environ. Sci. Technol., 26, 2261-2287, 1992.
Goodsite, M.E., Plane, J.M.C., and Skov, H., “A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere,” Environ. Sci. Technol., 38, 1772-1776, 2004.
Goulet, R.R., Holmes, J., Page, B., Poissant, L., Siciliano, S.D., Lean, D.R.S., Wang F., Amyot M., and Tessier A., “Mercury transformations and fluxes in sediments of a riverine wetland,” Geochim. et Cosmochim. Acta, 3393-3406, 2007.
Hammerschmidt, C.R. and Fitzgerald, W.F., “Photodecomposition of methylmercury in an arctic Alaskan lake,” Environ. Sci. Technol., 40, 1212-1216, 2006.
Hammerschmidt, C.R. and Fitzgerald,W.F., “Methylmercury cycling in sediments on the continental shelf of southern New England,” Geochim. et Cosmochim. Acta., 70, 918–930, 2006.
Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S., and Kim, S.H., “General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events,” Atmos. Environ., 94, 754-764, 2014.
Holmes, C.D., Jacob, D.J., Mason, R.P., and Jaffe, D.A., ”Sources and deposition of reactive gaseous mercury in the marine atmosphere,” Atmos. Environ., 43, 2278-2285, 2009.
Holmes, C.D., Jacob, D.J., and Yang, X., “Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere,” Geophys. Res. Lett., 33, L20808, 2006.
Hynes, A.J., Donohoue, D.L., Goodsite, M.E., and Hedgecock, I.M., “Mercury Fate and Transport in the Global Atmosphere: Chapter 14 Our Current Understanding of Major Chemical and Physical Processes Affecting Mercury Dynamics in the Atmosphere and At the Air-Water/Terrestrial Interfaces,” Springer, 427-457, 2009.
Iverfeldt, A. and Lindovist, O., “Atmospheric ocidation of elementary mercury by ozone in the aqueous phase,” Atmos. Environ., 20, 1567-1573, 1986.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y., “Export of atmospheric mercury from Asia,” Atmos. Environ., 39, 3029-3038, 2005.
Jen, Y.H., Chen, W.H., Hun, C.H., Yuan, C.S., and Ie, I.R., “ Field measurement of total gaseous mercury and its correlation with meteorological parameters and criteria air pollutants at a coastal site of the Penghu islands,” Aerosol Air Qual. Res., 14, 364-375, 2014.
Jen, Y.H., Yuan, C.S., Hung, C.H., Ie, I.R. and Tsai, C.M., “Tempospatial variation and partition of atmospheric mercury during wet and dry seasons at sensitivity sites within a heavily polluted industrial city,” Aerosol Air Qual. Res., 13, 13–23, 2013
Keeler, G.J., Glinsorn, G., and Pirrone, N., “Particulate mercury in the atmosphere: Its significance, transport, transformation and sources,” Water, Air, Soil Pollut., 80, 159–168, 1995.
Kim, P.R., Han, Y.J., Holsen, T.M., and Yi, S.M., “Atmospheric particulate mercury: Concentrations and size distributions,” Atmos. Environ., 61, 94–102, 2012.
Kock, H.H., Bieber, E., Ebinghaus, R., Spain, T.G., and Thees, B., “Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany,” Atmos. Environ., 39, 7549-7556, 2005.
Kuo, T.H., Chang, C.F., Urba, A., and Kvietkus, K., “Atmospheric gaseous mercury in Northern Taiwan,” Sci. Total Environ., 368, 10-18, 2006.
Lamborg, C.H., Fitzgerald, W.F., O’Donnell, J., and Torgersen, T., “A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients,” Geochim. et Cosmochim. Acta, 66, 1105–1118, 2002.
Laurier, F.J.G., Mason, R.P., Whalin, L., and Kato, S., “Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry,” J. Geophys. Res., 108(D17), 4529-4541, 2003.
Lin, C.C., Chen, S.J., Huang, K.L., Lee, W.J., Lin, W.Y., Tsai, J.H., and Chaung, H.C., “PAHs, PAH-induced carcinogenic potency, and particle-extract-induced cytotoxicity of traffic-related nano/ultrafine particles,” Environ. Sci. Technol., 42, 4229-4235, 2008.
Lin, C.J. and Pehkonen, S.O., “Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol,” Atmos. Environ., 31, 4125-4137, 1997.
Lin, C.J. and Pehkonen, S.O., “The chemistry of atmospheric mercury: a review,” Atmos. Environ., 33, 2067-2079, 1999.
Lin, C.J., Pongprueksa, P., Lindberg, S.E., Pehkonen S.O., Byun D., and Jang C., “Scientific uncertainties in atmospheric mercury models I: Model science evaluation,” Atmos. Environ., 40, 2911-2928, 2006.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X.B., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C., “A synthesis of progress and uncertainties in attributing the sources of mercury in deposition,” Royal Swedish Acad. Sci., 36, 19-32, 2007.
Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K., Meyers, T., Chambers, L., Landis, M., and Stevens, R., “Formation of reactive gaseous mercury in the Arctic: Evidence of oxidation of Hg0 to gas-phase Hg-II compounds after arctic sunrise,” Water, Air, Soil Pollut., 1, 295-302, 2001.
Lindqvist, O., “Atmospheric mercury-a review,” Tellus, 37, 136-159, 1985.
Li, T.C., Chen, W.H., Yuan, C.S., Wu, S.P., and Wang, X.H., ”Physicochemical characteristics and source apportionment of atmospheric aerosol particles in Kinmen-Xiamen Airshed,” Aerosol Air Qual. Res., 13, 308-323, 2013.
Liu, J.L., Xu, X.R., Yu, S., Chen, H., Peng, J.X., Hong, Y.G., and Feng, X.B., ”Mercury contamination in fish and human hair from Hainan Island, South China Sea: Implication for human exposure,” Environ. Res., 135, 42–47, 2014.
Lyman, S.N., Jaffe, D.A., and Gustin, M.S., “Release of mercury halides from KCl denuders in the presence of ozone,” Atmos. Chem. Phys., 10, 8197-8204, 2010.
Mason, R.P., Fitzgerald, W.F., and Morel, F.M.M., “The biogeochemical cycling of elemental mercury: Anthropogenic influences,” Geochim. et Cosmochim. Acta, 58, 3191-3198, 1994.
Mitchell, C.P.J., Branfireun, B.A., and Kolka, R.K.,” Total mercury and methylmercury dynamics in upland–peatland watersheds during snowmelt,” Biogeochem., 90, 225-241, 2008.
Morita, H., Tanaka, H., and Shimomura, S., “Atomic fluorescence spectrometry of mercury: Principles and developments,” Spectrochim. Acta, 50B, 69-84, 1995.
Munthe, J., Angberg, I.W., Pirrone, N., Ivefeldt, Å., Ferrara R., Ebinghaus R., Feng X.B., Gårdfeldt K., Lanzillotta G.K.E., Lindberg S.E., Lu, J., Mamane Y., Prestbo, E., Schmolke S., Schroeder W.H., Sommer J., Sprovieri F., Stevens R.K., Stratton, W., Tuncel, G., and Urba, A., “Intercomparison of methods for sampling and analysis of atmospheric mercury species,” Atmos. Environ., 35, 3007–3017. 2001.
Munthe, J. and Mcelroy, W.J., “Some aqueous reactions of potential importance in the atmospheric chemistry of mercury,” Atmos. Environ.,” 26, 553-557, 1992.
Muscat, V.I. and Vickers, T. J., “Determination of nanogram quantities of mercury by the reduction-aeration method and atomic fluorescence spectrophotometry,” Anal. Chim. Acta, 57, 23-30, 1971.
Ngim, C.H., Foo, S.C., Boey, K.W., and Jeyaratnam J., “Chronic neurobehavioural effects of elemental mercury in dentists,” Br. J. Ind. Med., 49, 782-790, 1992.
Nguyen, H.T., Kim, K.H., Kim, M.Y., Kang, C.H., and Shim, S.G., “Mercury in air in an area impacted by strong industrial activities,” Chemosphere, 71, 2017-2029, 2008.
Patrick, L., “Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity,” Altern. Med. Rev., 7(6), 456-471, 2002.
Petersen, G. and Iverfeldt, M.J., “Atmospheric mercury species over central and northern Europe. Model calculation and comparison with observations from the Nordic air and precipitation network for 1987 and 1988,” Atmos. Environ., 29, 49-67, 1995.
Petersen, G., Iverfeldtt, A., and Munthe, J., “Atmospheric mercury species central; and northern Europe: Model calculations and comparison with observations from the Nordic air and precipitation network for 1987 and 1988,” Atmos. Environ., 29, 47-67, 1995.
Piikivi, L., “Cardiovascular reflexes and low long-term exposure to mercury vapour,” Int. Arch. Occup. Environ. Health, 61, 391-395, 1989.
Pirrone, N. and Mason, R., “Mercury Fate and Transport in the Global Atmosphere,” Springer, 2009.
Pirrone, N., Cinnirella, S., Feng, X.B., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., and Telmer, K., “Global mercury emissions to the atmosphere from anthropogenic and natural sources,” Atmos. Chem. Phys., 10, 5951-5964, 2010.
Pirrone, N., Glinsorn, G., and Keeler, G.J., “Ambient levels and dry deposition fluxes of mercury to lakes Huron, Erie and St. Clair,” Water, Air, Soil Pollut., 80, 179-188, 1995.
Pleijel, K. and Munthe, J., “Modeling the atmospheric mercury cycle-Chemistry in fog droplets,” Atmos. Environ., 29, 1441-1457, 1995.
Poissant, L., Pilote, M., Beauvais, C., Constant, P., and Zhang, H.H., “A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Quebec, Canada,” Atmos. Environ., 39, 1275-1287, 2005.
Prospero, J.M., Charlson, R.J., Mohnen, V., Jaenicke, R., Delany, A.C., Moyers J., Zoller,W., and Rahn, K., “The atmospheric aerosol system: an overview. Review of geophysical space physics,” Rev. Geophy., 21(7), 1607-1629, 1983.
Rong, X., Waite, D., Huang, G.H., Tong, L., and Kybet, B., “Materials selection for a dry atmospheric mercury deposits sampler,” Chemosph., 45, 1045-1051, 2001.
Rothenberg, S.E., McKee, L., Gilbreath, A., Yee, D., Connor, M., and Fu, X.W., “Evidence for short-range transport of atmospheric mercury to a rural, inland site,” Atmo. Environ., 44(10), 1263-1273, 2010.
Sakata, M. and Marumoto, K., “Formation of atmospheric particulate mercury in the Tokyo metropolitan area,” Atmos. Environ., 36, 239-246, 2002.
Sallsten, G., Barregird, L., and Schutz, A., “Clearance half life of mercury in urine after the cessation of long term occupational exposure: Influence of a chelating agent (DMPS) on excretion of mercury in urine,” Occup. Environ. Med., 51, 337-342, 1994.
Schaefer, J.K., Letowski, J., and Barkay, T., “Mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions,” Geomicrobiol. J., 102, 87-102, 2002.
Schroedert, W.H. and Munthes, J., “Atmospheric mercury-an overview,” Atmos. Environ., 32, 809-809, 1998.
Sekhavatjou, M.S., Alhashem, A.H., Taghavirad, S.S., Goudarzi, G., and Mollaee, A.R., “Seasonal variation of mercury vapor concentrations in industrial, residential, and traffic areas of Ahvaz city, Southwest Iran,” Afr. J. Biotechnol., 1012232-1012236, 2011.
Sheu, G.R. and Mason, R.P., “An examination of methods for the measurements of reactive gaseous mercury in the atmosphere,” Environ. Sci. Technol., 35(6), 1209-1216, 2001.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou-Yang, C.F., and Wang, S.H., “Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan,” Atmos. Environ., 44, 2393–2400, 2010.
Slemr, F. and Langer, E., “Increase in global atmospheric concentration of mercury inferred from measurements over the Atlantic Ocean,” Nature, 355, 434-437, 1992.
Slemr, F., Seiler, W., and Schuster, G., “Latitudinal distribution of mercury over the Atlantic Ocean,” J. Geoph. Res., 86(C2), 1159-1166, 1981.
Sommar, J., Andersson, M.E., and Jacobi, H.W., “Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean,” Atmos. Chem. Phys., 10, 5031–5045, 2010.
Sommar, J., Gardfeldt, K., Strömberg, D., and Feng, X.B., “A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury,” Atmos. Environ., 35, 3049-3054, 2001.
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A., “A review of worldwide atmospheric mercury measurements,” Atmos. Chem. Phys., 10, 8245-8265, 2010.
Stephens, C.R., Shepson, P.B., Steffen, A., Bottenhei m, J.W., Liao, J., Huey, E.C., Apel, E.C., Weinheimer, A.J., Hall, S.R., Cantrell, C. A., Sive, B.C., Knapp, D., Montzka, D.D., and Hornbrook, R.S., “The relative importance of chlorine and bromine radicals in the oxidation of atmospheric mercury at Barrow, Alaska,” J. of Geophys. Res., 117, D00R11, 2012.
Sunderland, E.M., and Mason, R.P., “Human impacts on open ocean mercury concentrations: Global biogeochem cycles,” Amer. Geophys. Union, 2007.
Sunderland, E.M., Krabbenhoft, D.P., Moreau, J.W., Strode, S.A., and Landing, W.M., “Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models,” Amer. Geophys. Union, 2009.
Temmerman, E., Vandecasteele, C., Vermeir, G., Leyman, R., and Dams, R., “Sensitive determination of gaseous mercury in air by cold vapour atomic fluorescence spectrometry after amalgamation,” Anal. Chim. Acta, 236, 371-376, 1990.
UNEP Division of Technology, Industry and Economics, Chemicals Branch International Environment House 1 11-13, Chemin des Anémones CH -1219 Châtelaine, Geneva Switzerland, ”Global mercury assessment 2013 Sources Emissions, Releases and Environmental Transport,” 2013.
Valente, R.J., Shea, C., Humes, K.L., and Tanner, R.L., “Atmospheric mercury in the great smoky mountains compared to regional and global levels,” Atmos. Environ., 41, 1861–1873, 2007.
Wang, D.Y., Shi, X., and Wei, S., “Accumulation and transformation of atmospheric mercury in soil,” Sci. Total Environ., 304, 209-214, 2003.
Wang, Y., Huang, J., Hopke, P.K, Rattigan, O.V., Chalupa, D.C., Utell, M.J., and Holsen, T.M., “Effect of the shutdown of a large coal-fired power plant on ambient mercury species,” Chemosphere, 92(4), 360-367, 2013
Weiss-Penzias, P., Jaffe, D.A., McClintick, A., Prestbo, E.M, Landis, M.S., ”Gaseous elemental mercury in the marine boundary layer: Evidence for rapid removal in anthropogenic pollution,” Environ. Sci. Technol., 37, 3755-3763, 2003.
Yoshida, Z. and Motojima, K., “Rapid determination of mercury in air with gold-coated quartz wool as collector,” Anal. Chim. Acta, 106, 405-410, 1979.
Yu, L.P. and Yan, X.P., “Factors affecting the stability of inorganic and methylmercury during sample storage,” Trends Anal. Chem., 22, 245-253, 2003.
Zielonka, U., Hlawiczka, S., Fudala, J., Wangberg, I., and Munthe, J., “ Seasonal mercury concentrations measured in rural air in southern Poland contribution from local and regional coal combustion,” Atmos. Environ., 39, 7580-7586, 2005.
馮新斌、Jonas Sommar、Oliver Lindqvist、朱泳煊,“大氣活性氣態汞採樣和分析方法”,分析化學研究簡報,2003。
李佳樺,“東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋之建立”,國立中央大學化學研究所碩士論文,2004。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第二十二屆空氣污染控制技術研討會,2005。
林建志,“台灣平地與高山大氣汞監測與比較”,國立中央大學化學研究所碩士論文,2006。
劉俊宏,“高屏沿海地區臭氧垂直剖面特性之調查研究”,輔英科技大學環境工程研究所碩士論文,2006。
林震岩,“多變量分析:SPSS的操作與應用“,智勝文化,2007。
劉全盛,“南海北部海域大氣汞的時序變化”,台灣大學海洋研究所碩士論文,2007。
張泰華,“亞洲國家(中國,日本,韓國,台灣)大氣汞濃度於2000-2008年之研究”,弘光科技大學環境與安全衛生工程系碩士論文,2007。
守富寛,”石炭燃焼プロセスにおける水銀の挙動と抑制技術”, 岐阜大学大学院工学研究科環境エネルギーシステム専攻,2008。
李國揚,”台灣冬季稻作生質燃燒大氣脫水糖類特徵之研究”,國立雲林科技大學環境安全衛生工程系碩士論文,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討” ,國立中山大學環境工程研究所碩士論文,2009。
袁中新,“99年度高雄市汞污染源周界及敏感點大氣汞污染監測計畫書”,高雄市環境保護局計畫報告,2010。
劉娜,”貴陽市大氣降水中汞的分佈特徵”,生態學雜誌, Chinese Journal of Ecology, 30,933-938,2011。
巫月春,曹國田,程惠生,陳重方,賴金郎,,黃星榜,陳滄欽,蘇育德,”台中以南地區空氣中粒狀物元素含量調查研究”,環境分析化學研討會,2011。
蔡政謀,“台灣寺廟拜香及金紙焚燒排放含汞污染物之室內外環境日夜變化及排放係數量測”,國立中山大學環境工程研究所碩士論文,2013。
任翼秀,“工業都市及海島地區大氣汞時空分佈、氣固相分佈及長程傳輸之影響”, 國立中山大學環境工程研究所博士論文,2013。
日本環境省,エックス都市研究所,”水銀に関する水俣条約の国内対応検討委員会”,2014。
張憶閔,”台灣海峽周邊地區大氣汞時空分佈及污染來源解析”,國立中山大學環境工程研究所碩士論文,2014。
NASA FIRMS Web Fire Mapper: https://firms.modaps.eosdis.nasa.gov/firemap/
NOAA Air Resources Laboratory: http://ready.arl.noaa.gov/HYSPLIT.php
United States Environment Protection Agency: http://www.epa.gov/mercury/
Woods Hole Oceanographic Institution: http://www.whoi.edu/news-release/mercury-in-global-ocean
World Health Organization: http://www.who.int/mediacentre/factsheets/fs361/en/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code