Responsive image
博碩士論文 etd-0802115-183304 詳細資訊
Title page for etd-0802115-183304
論文名稱
Title
澎湖群島大氣汞污染物濃度時空分佈及化學特徵分析
Temporospatial Distribution of Atmospheric Speciated Mercury and Their Chemical Characteristics at the Penghu Islands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-09-02
關鍵字
Keywords
時空分佈、污染源解析、傳輸路徑、大氣汞量測、澎湖群島
Penghu Islands, atmospheric mercury measurement, spatiotemporal variation, source identification, transportation routes
統計
Statistics
本論文已被瀏覽 5692 次,被下載 27
The thesis/dissertation has been browsed 5692 times, has been downloaded 27 times.
中文摘要
台灣地處歐亞大陸之邊緣,汞污染物伴隨其他空氣污染物經長程傳輸後,其影響地區所及除日本、韓國及夏威夷外,甚至可達美洲大陸的西岸,亦可能對台灣地區造成影響。隨著當地污染排放及長程傳輸所帶來不同型態含汞污染物,其特徵亦隨之改變;此外,在大氣傳輸過程中,也可能會挾帶沿途經過城市所排放之含汞污染物,導致台灣地區大氣汞濃度逐漸升高。
本研究利用行政院環境檢驗所公告之「空氣中汞檢測及分析標準方法」(NIEA A304.10C)及美國環保總署公告之IO-5方法,針對澎湖地區春、夏、秋、冬四個季節,分別在三處採樣站進行環境大氣中總氣態汞(TGM) 24小時連續監測與氣態氧化汞(GOM)及顆粒態汞(PHg)的日夜手動量測與分析,藉以瞭解澎湖地區大氣汞時空分佈情形。此外,氣態氧化汞GOM至今尚未公告標準方法。有鑒於此,本研究參考過去文獻中的擴散管吸附法,自製及驗證GOM採樣及分析方法,並與現有已公告之標準方法結合為完整採樣系統應用於本研究。另外,本研究應用NOAA-HYSPLIT Model逆軌跡模式與全球火點分佈圖(Global Fire Map)來推估污染氣團來源及傳輸路徑與燃燒源,並且與大氣中法規空氣污染物及氣象因子進行相關性分析與探討。
由大氣汞(TGM)季節濃度變化趨勢顯示,澎湖地區大氣汞濃度高低依序為春季>冬季>秋季>夏季,TGM平均濃度為4.60±1.38 ng/m3,濃度範圍則介於2.78~6.07 ng/m3之間,最高TGM濃度均位於A3站。由TGM逐時變化趨勢而言,A1站及A2站濃度變化呈現平穩狀態,A3站晚間18時至23時TGM濃度變化起伏較大,推測可能受到漁船尾氣排放之影響。由GOM與PHg季節濃度變化趨勢顯示,澎湖地區GOM季節濃度高低依序為夏季>春季>冬季>秋季;PHg季節濃度高低依序為春季>冬季>夏季>秋季。由GOM與PHg日夜濃度變化趨勢顯示,日夜GOM平均濃度分別為0.108±0.094 ng/m3與0.054±0.037 ng/m3,濃度範圍分別介於0.041~0.244 ng/m3與0.013~0.103 ng/m3之間,最高GOM濃度均位於A2站;日夜PHg平均濃度分別為0.329±0.167 ng/m3與0.210±0.124 ng/m3,濃度範圍分別介於0.190~0.565 ng/m3與0.071~0.319 ng/m3之間,最高PHg濃度均位於A1站。大氣汞氣固相分佈以TGM為主,TGM及PHg分別佔80.6~95.5%和4.5~19.4%。此外,由氣固相分佈來判斷本地大氣汞可能以人為源及交通源為主,少部分則以工業排放之含汞污染物居多。
由逆軌跡模式、火點地圖及氣象監測資料顯示,在春季採樣期間,污染氣團流經大陸華北沿海地區,受大陸高壓迴流影響向東傳輸,出海後再向南傳輸至澎湖地區;在夏季採樣期間,污染氣團主要來自大陸南海及菲律賓海域,該區域並無大型燃燒源排放,因而使大氣汞濃度較其他季節來得低;在秋、冬季採樣期間,大陸沿海地區與朝鮮半島工業污染物排放旺盛,污染氣團挾帶著含汞污染物經盛行季風長程傳輸至澎湖地區。
Abstract
Taiwan is located at the eastern edge of the Eurasian Continent. Mercury accompaning with other air pollutants could be long-range transported to Japan, Korea, Hawaii, and even arrived the western coast of American Continent. Moreover, it could also cause potential impacts on Taiwan. Local and long-range transport emissions arising from different types of mercury may change its characteristics. Additionally, air passes through the cities emitted mercury-containing pollutants during the transportation process, resulting in the increase of atmospheric mercury concentration.
This study aims to investigate the seasonal variation and source identification of atmospheric speciated mercury at the Penghu Islands. Both continuous monitoring (Tekran, Model 2537B) and manual sampling (USEPA IO-5) of atmospheric mercury were simultaneously conducted to measure the concentration of total gaseous mercury (TGM), particulate mercury (PHg), and gaseous oxidized mercury (GOM) in the atmosphere. Field sampling and analysis of atmospheric speciated mercury were conducted in winter (January), spring (April), summer (July), and fall (November) of 2013 at three sampling sites during the daytime (8:00-20:00) and nighttime (20:00-08:00) sampling periods, respectively, in order to understand the spatiotemporal distribution of atmospheric mercury at the Peughu Islands. The present study referred previous literatures about gaseous oxidized mercury (GOM) sampling and analytical methods, and combined with the existing published standard methods to conduct the sampling and analysis of GOM. This study further applied NOAA-HYSPLIT Model backward trajectory simulation plots and global fire maps to estimate the potential emission sources and the transportation routs of atmospheric air masses and further correlated with the meteorological parameters and criteria air pollutants.
The concentrations of atmospheric mercury as TGM at the Penghu Islands showed a significant seasonal variation and ordered as spring> winter> fall> summer. The concentration of TGM ranged from 2.78 to 6.07 ng/m3 with an average of 4.60 ± 1.38 ng/m3, and the highest concentration occurred at A3 site. The variation of TGM concentration between A1 and A2 sites was in steady state, while the TGM concentration variation at A3 site was undulating between the hours of 18:00 to 23:00, presumably due to the emissions from fishing boats. The seasonal variation of GOM and PHg concentrations showed that GOM concentrations were in order as summer> spring> winter> fall, while PHg concentrations were in order as spring> winter> summer> fall. Diurnal variation of GOM and PHg concentrations showed that the average GOM concentrations at daytime and nighttime were 0.108 ± 0.094 ng/m3 and 0.054 ± 0.037 ng/m3, respectively, with the concentration range of 0.041 ~ 0.244 ng/m3 and 0.013 ~ 0.103 ng/m3, respectively, and the highest concentration was observed at A2 site. The average PHg concentrations at daytime and nighttime were 0.329 ± 0.167 ng/m3 and 0.210 ± 0.124 ng/m3, respectively, with the concentration range of 0.190 ~ 0.565 ng/m3 and 0.071 ~ 0.319 ng/m3, respectively, and the highest concentration was recorded at A1 site. The partition of PHg ranged from 4.8% to 19.4% of total atmospheric mercury (TAM). In addition, the distribution of gas-solid phase mercury might be attributed from anthropogenic and mobile sources, and followed by industrial emissions.
The NOAA-HYSPLIT backward trajectory simulation plots and global fire maps showed that, during the spring sampling period, contaminated air masses flowed through the coastal areas of northern China with high current transmission reflux which affected the east and the south and then transferred contaminants to the Penghu Islands. During the summer sampling period, contaminated air masses were blown mainly from South China Sea and the Philippines which had less combustion source emissions and thus made atmospheric mercury concentrations much lower than in other seasons. During the fall and winter sampling periods, the coastal exuberant industrial emissions from mainland and air mass laden mercury contaminants from the Korea Peninsula were transported by the prevailing monsoon long-range transport of mercury containing pollutants to the Penghu Islands.
目次 Table of Contents
目 錄
頁次
學位論文審定書………………………………………………………………….i
誌謝……………………………………………………………………………….ii
中文摘要………………………………………………………………………. iii
英文摘要………………………………………………………………………. v
目錄……………………………………………………………………………….ix
表目錄…………………………………………………………………………….xii
圖目錄…………………………………………………………………………….xiii
第一章 前言…………………………………………………………………….1
1.1 研究緣起………………………………………………………………… 1
1.2 研究目的………………………………………………………………… 1
1.3 研究範圍與架構…………………………………………........................2
第二章 文獻回顧……………………………………………………………….4
2.1 汞的特性……..……………….………………………………………….4
2.1.1 汞的基本性質及物化特性………………………………………….4
2.1.2 大氣汞來源………………………………………………………….6
2.1.3 大氣汞的分類及組成特徵………………………………………….9
2.2 汞的健康風險…………………………………………………………… 11
2.2.1 汞的基本毒理………………………………………………………. 11
2.2.2 汞的危害性…………………………………………………………. 12
2.2.3 汞的吸入暴露風險參考指標………………………………………. 13
2.3 大氣汞量測方法………………………………………………………… 17
2.3.1大氣汞量測技術演進…………………………………...................... 17
2.3.2總氣態汞(TGM)的採樣及分析方法………………….......................18
2.3.3氣態氧化汞(GOM)的量測方法………………………...................... 19
2.4 大氣氣團長程傳輸……………………………………………………… 21
2.4.1 逆軌跡模式之原理…………………………………………………. 21
2.4.2 逆軌跡模式之應用…………………………………………………. 23
2.5國內外大氣汞相關研究…………………………….................................25
2.5.1歐美地區大氣汞相關研究……………………………......................25
2.5.2亞洲地區大氣汞相關研究……………………………......................28
2.5.3台灣地區大氣汞相關研究……………………………......................30
第三章 研究方法………………………………………………………………33
3.1 大氣汞採樣規劃………………………………………………………… 33
3.1.1 採樣地點規劃………………………………………………………. 33
3.1.2 採樣時間規劃………………………………………………………. 33
3.2 大氣汞量測方法與步驟………………………………………………… 34
3.2.1 TGM量測步驟………………………...……………………………. 34
3.2.1.1 TGM自動監測…………………...………………………………...34
3.2.1.2 TGM手動採樣…………………...………………………………... 35
3.2.2 GOM量測步驟………..…………………………….……………… 37
3.2.3 PHg量測步驟..………..……..……………………………………... 40
3.3 大氣汞分析方法與步驟………………………………………………… 41
3.3.1 TGM分析方法與步驟……………………………………………… 43
3.3.2 GOM分析方法與步驟………………………….……......................43
3.3.3 PHg分析方法與步驟…..…………………………………………... 44
3.4 大氣汞採樣及分析之品保與品管(QA/QC)……………………………. 44
3.5 冷蒸氣原子螢光光譜儀(CVAFS)………………………………………. 46
3.6 總氣態汞連續監測儀…………………………………………………… 49
3.7 逆軌跡模式及火點地圖………………………………………………… 49
第四章 結果與討論…………………………………………………………….52
4.1 GOM採樣分析方法驗證與測試………………………………………... 52
4.1.1 GOM擴散管空白測試……………………………………………... 52
4.1.2 GOM擴散管穿透率實驗…………………………………………... 53
4.1.3 GOM擴散管環境量測平行比對測試……………………………... 53
4.2 澎湖地區氣象條件分析………………………………………………... 54
4.2.1 風速及風向……………...……………………………...................... 55
4.3 澎湖地區大氣汞季節濃度變化趨勢……………………........................56
4.3.1 總氣態汞濃度季節變化趨勢……………...…………...................... 56
4.3.2 總氣態汞小時濃度變化趨勢……………...…………...................... 58
4.3.3 氣態氧化汞及顆粒態汞不同季節日夜濃度變化趨勢……………. 60
4.3.4 澎湖地區氣固相分佈特徵………...…………………...................... 63
4.3.5 澎湖地區不同季節TGM濃度發生頻率分佈………....................... 66
4.3.6 澎湖地區大氣汞空間分佈……………………...……......................67
4.4 澎湖地區大氣汞污染源解析……………………………........................68
4.4.1 污染氣團傳輸路徑分析………………………...……...................... 69
4.4.2 全球火點監測分析………………………...……...........….............. 70
4.3.3 大氣汞濃度、氣象參數及空氣污染物之相關性………………….. 70
4.5 澎湖地區大氣汞濃度與台灣及亞洲地區島嶼比較…………………… 75
第五章 結論與建議…………………………………………………………….. 78
5-1 結論………………………………………………………......................78
5-2 建議………………………………………………………......................80
參考文獻……………………………………………………………. …………..81
附錄A 大氣汞TGM濃度量測數據…………………………………………. 97
附錄B 大氣汞GOM及PHg日夜濃度量測數據…………………….............. 101
參考文獻 References
Andres, S., Laporte, J.M., and Mason, P.R., “Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectessapidus),” Aquatic Toxicology, 56, 303-320, 2002.
Abbott, M.L., Lin, C.J., Martian, P., and Einerson, J.J., “Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho,” Appl. Geochem., 43, 438-453, 2008.
Baeyens, W., Leermakers, W., Papina, T., Saprykin, A., Brion, N., Noyen, J., De Gieter, M., Elskens, M., and Goeyens, L., “Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary Fish, “ Arch. Environ. Contam. Toxicol., 45, 498-508, 2003.
Bash, J.O. and Miller, D.R., “Growing season total gaseous mercury (TGM) flux measurements over an Acer rubrum L. stand,” Atmos. Environ., 43, 5953-5961, 2009.
Castro, M.S., Moore, C., Sherwell, J., and Brooks. S.B., “Dry deposition of gaseous oxidized mercury in Western Maryland,” Sci. Total Environ., 417-418, 232-240, 2012.
Chen, L., Liu, M., Xu, Z.C., Fan, R.F., Tao, J., Chen, D., Zhang, D., Xie, D., and Sun, J., “Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons,” Atmos. Environ., 77, 757-766, 2013.
Cheng,I., Zhang, L.M., Mao,H., Blanchard, P., Tordon, R., and Dalziel, J., “Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site,” Atmos. Environ., 82, 193-205, 2014.
Choi, E.M., Kim, S.H., Holsen, T.M., and Yi. S.M., “Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan,” Environ. Pollu., 157, 816-822, 2009.
Choi, H.D. and Holsen. T.M., “Gaseous mercury fluxes from the forest floor of the Adirondacks,” Environ. Pollu., 157, 592-600, 2009.
Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Penzias, P.W., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y., “Reactive and particulate mercury in the Asian marine boundary layer,” Atmos. Environ., 42, 7988-7996, 2008.
Christopher W., Moore., Obrist, D., and Luria, M., “Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects,” Atmos. Environ., 69, 231-239, 2013.
Ci, Z.J., Zhang, X.S., Wang, Z.W., and Niu, Z.C., “Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site downwind of East China: Temporal variation and long-range transport,” Atmos. Environ., 45, 2480-2487, 2011.
Dastoor, A.P. and Larocque, Y., “Global circulation of atmospheric mercury: a modeling study,” Atmos. Environ., 38, 147-161, 2004.
Ebinghaus, R., Jennings, S.G., Kock, H.H., Derwent, R.G., Manning, A.J., and Spain, T.G., “Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009,” Atmos. Environ., 45, 3475-3480, 2011.
Eckley, C,S., Branfireun, B., Diamond, M., Peter C., Metre, V., and Heitmuller, F., “Atmospheric mercury accumulation and washoff processes on impervious urban surfaces,” Atmos. Environ., 42, 7429-7438, 2008.
Fang, G.C., Zhang, L., and Huang, C.S., “Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury,”Atmos. Environ., 61, 371-377, 2012.
Fang, G.C., Wu, Y.S., and Chang, T.H., “Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008,” J. Hazard. Mater., 162, 607-615, 2009.
Feng, X.B., Sommar, J., Lindqvist, O., and Hong, Y.T., “Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China, “ Water Air Soil Poll., 139, 311-324, 2002.
Fantozzi, L., Manca, G., Ammoscato, I., Pirrone, N., and Sprovieri, F., “The cycling and sea–air exchange of mercury in the waters of the Eastern Mediterranean during the 2010 MED-OCEANOR cruise campaign,” Sci. Total Environ., 448, 151-162, 2013.
Friedli, H.R., Radke, L.F., Prescott, R., Li, P., Woo, J.H., and Carmichael, G.R., “Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications,” J. Geophys. Res 109, D19S25, 2004.
Fu, X., Feng, X., Zhang, G., Xu, W., Li, X., Yao, H., Liang, P., Li, J., Sommar, J., Yin, R., and Liu, N., “Mercury in the marine boundary layer and seawater of the South China Sea: concentrations, sea/air flux, and implication for land outflow,” J. Geophys. Res., 115, D06303, 2010.
Fu, X.W., Feng, X.B., Zhu, W.Z., Wang, S.F., and Lu, J.L., “Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China,” Atmos. Environ., 42, 970-979, 2008.
Fu, X.W., Feng, X.B., Wang, S.F., Rothenberg, S., Shang, L.H., Li, Z.G., and Qiu, G.G., “Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: Implications for industrial and domestic mercury emissions in remote areas in China,” Sci. Total Environ., 407, 2306-2314, 2009.
Fu, X.W., Feng, X.B., Zhu, W.z., Rothenberg, S., Yao, H., and Zhang, H., “Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China,” Environ. Pollut., 158, 2324-2333, 2010.
Fu, X.W., Feng, X.B., Qiu, G.g., Shang, L.h., and Zhang, H., “Speciated atmospheric mercury and its potential source in Guiyang, China,” Atmos. Environ., 45, 4205-4212, 2011.
Gabriel, M.C., Williamson, D.G., and Brooks, S., “Potential impact of rainfall on the air-surface exchange of total gaseous mercury from two common urban ground surfaces,” Atmos. Environ., 45, 1766-1774, 2011.
Galbreath, K.C. and Zygarlicke, C.J., “Mercury transformations in coal combustion flue gas, Fule Process," Teachnol., 65, 289-310, 2000.
Guédron, S., Grangeon, S., Jouravel, G., Charlet, L., and Sarret, G., “Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): Contribution of canopy uptake,” Sci. Total Environ., 445-446, 356-364, 2013.
Hladikova, V., Petrik, J., Jursa, S., Ursinyova, M., and Kocan, A., “Atmospheric mercury levels in the Slovak Republic, Chemosphere., 45, 801-806, 2001.
Huang, J., Liu, C.K., Huang, C.S., and Fang, G.C., “Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level,” Chemosphere., 87, 579-585, 2012.
Iverfeldt, A. and Lindqvist, O., “Atmospheric oxidation of elemental mercury by ozone in the aqueous phase,” Atmos. Environ., 20, 1567-1573, 1986.
Jiang, Y., Cizdziel, J.V., and Lu, D.J., “Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings,” Chemosphere., 93, 1694-1700, 2013.
Kang, H. and Xie, Z., “Atmospheric mercury over the marine boundary layer observed during the third China Arctic Research Expedition,” J Environ Sci., 23, 1424-1430, 2011.
Kim, K.H., Shon, Z.H., Nguyen, H.T., Jung, K., Park, C.G., and Bae. G.N., “The effect of man made source processes on the behavior of total gaseous mercury in air: A comparison between four urban monitoring sites in Seoul Korea,” Sci. Total Environ., 409, 3801-3811, 2011.
Kim, K.H., Yoon, H.O., Brown, R.J.C., Jeon, E.C., Sohn, J.R., Jung, K., Park, C.G., and Kim. I.S., “Simultaneous monitoring of total gaseous mercury at four urban monitoring stations in Seoul, Korea,” Atmos. Res., 132-133, 199-208, 2013.
Kim, P.R., Han, Y.J., Holsen, T.M., and Yi. S.M., “Atmospheric particulate mercury: concentrations and size distributions,” Atmos. Environ., 64, 94-102, 2012.
Kim, J.P. and Fitzgerald, W.F., “Sea-air partitioning of mercury in the equatorial Pacific Ocean,” Science, 231(4742), 1131-1133, 1986.
Kim, S.H., Han, Y.J., Holsen, T.M., and Yi, S.M., “Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea,” Atmos. Environ., 43, 3267-3274, 2009.
Kock, H.H., Bieber, E., Ebinghaus, R., Spain, T.G., and Thees, B., “Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany,” Atmos. Environ., 39, 7549-7556, 2005.
Kono, Y.K., Rahajoe, J.S., Hidayati, N., Kodamatani, H., and Tomiyasu, T., “Using native epiphytic ferns to estimate the atmospheric mercury levels in a small-scale gold mining area of West Java, Indonesia,” Chemosphere, 89, 241-248, 2012.
Kocman, D., Vreča, P., Fajon, V., and Horvat, M., “Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia,” Environ Res., 111, 1-9, 2011.
Kuo, T.H., Chang, C.F., Urba, A., and Keivtkus, K., “Atmospheric gaseous mercury in Northern Taiwan,” Sci. Total Environ., 368, 10-18, 2006.
Laurier, F.J.G., Mason, R.P., Whalin, L., and Kato, S., “Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry,” J. Geophys. Res, 108(D17), 4529-4541, 2003.
Li, J., Sommar, J., Wängberg, I., Lindqvist, O., and Wei, S.Q., “Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005,” Atmos. Environ., 42, 8382-8388, 2008.
Li, Z., Xia, C.H., Wang, Xi.M., g Xiang, Y.R., and Xie, Z.Q., “Total gaseous mercury in Pearl River Delta region, China during 2008 winter period,” Atmos. Environ., 45, 834-838, 2011.
Lin, C.J. and Pehkonen, S.O., “Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol,” Atmos. Environ., 31, 4125-4137, 1997.
Liu, B., Gerald J., Keeler, G. J., Dvonch, T., James A., Mary M., Lynam, B.J., Frank J., Marsik., and Morgan, J.T., “Urban–rural differences in atmospheric mercury speciation,” Atmos. Environ., 44, 2013-2023, 2010.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., and Morgan, J.T., “Temporal variability of mercury speciation in urban air,” Atmos. Environ., 41(9), 1911-1923, 2007.
Liu, N., Qiu, G., Landis, M.S., Feng, X.B., Fu, X.W., and Shang. L.H., “Atmospheric mercury species measured in Guiyang, Guizhou province, southwest China,” Atmos. Res., 100, 93-102, 2011.
Mason, R.P., Fitzgerald, W.F., and Morel, M.M., “The biogeochemical cycling of elemental mercury: anthropogenic influences,” Geochim. Cosmochim. Acta., 58, 3191-3198, 1994.
Mazur, M., Mintz, R., Lapalme, M., and Wiens, B., “Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada,” Sci. Total Environ., 408, 373-381, 2009.
Marumotoa, K., Hayashib, M., and Takamic, A., “Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia,” Atmos. Environ., 117, 147-155, 2015.
Munthe, J., “The aqueous oxidation of elemental mercury by ozone,” Atmos. Environ., 26, 1461-1468, 1992.
Nater, E.A. and Grigal, D.F., “Regional trends in mercury distribution across the Great Lakes states, north central USA,” Nature, 358, 139-141, 1992.
Nair, U.S., Wu, Y.L., Walters, J., Jansen, J., and Edgerton, E.S., “Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States,” Atmos. Environ., 47, 499-508, 2012.
Nelson, P.F., Morrison, A. L., Malfroy, H.J., Cope, M., Lee, S., Hibberd, M.L., Meyer, C.P., and McGregor, J., “Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources,” Atmos. Environ., 62, 291-302, 2012.
Nguyen, D.L., Kim, J. Y., Shim, S. G., and Zhang, X.S., “Ground and shipboard measurements of atmospheric gaseous elemental mercury over the Yellow Sea region during 2007–2008,” Atmos. Environ., 45, 253-260, 2011.
Nguyen, H.T., Kim, M.Y., and Kim. K.H., “The influence of long-range transport on atmospheric mercury on Jeju Island, Korea,” Sci. Total Environ., 408, 1295-1307, 2010.
Obrist, D., Hallar, A.G., McCubbin, I., Stephens, B.B., and Rahn, T., “Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake,” Atmos. Environ., 42, 7579-7589, 2008.
Pan, L., Lin, C.J., Carmichael, G.R., Streets, D.G., Tang, Y., Woo, J.H., Shetty, S.K., Chu, H.W., Ho, T.C., Friedli, H.R., and Feng, X., “Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system,” Sci. Total Environ., 408, 3277-3291, 2010.
Pacynaa, E.G., Pacynaa, J.M., Sundsetha, K., Munthec, J., Kindbomc, K., Wilsond, S., Steenhuisene, F., and Maxsonf, P., “Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020,” Atmos. Environ., 44, 2487-2499, 2010.
Pandey, S. K., Kim, K.H., Yim, U.H., Jung, M.C., and Kang, C.H., “Airborne mercury pollution from a large oil spill accident on the west coast of Korea,” J. Hazard. Mater., 164, 380-384, 2009.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A., “Status review of mercury control options for coal-fired power plants,” Fuel Proc. Technol., 82, 89-165, 2003.
Peterson, C., Gustin, M., and Lyman, S., “Atmospheric mercury concentrations and speciation measured from 2004 to 2007 in Reno, Nevada, USA,” Atmos. Environ., 43, 4646-4654, 2009.
Pirrone, N., Costa, P., Pacyna, J.M., and Ferrara, R., “Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region,” Atmos. Environ., 35, 2997-3006, 2001.
Pongprueksa, P., Lin, C.J., Lindberg, S.E., Jang, C., Braverman, T., Bullock Jr., O.R., Thomas C. Ho, and Chu, H.W., “Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg (II) reduction mechanism,” Atmos. Environ., 42, 1828-1845, 2008.
Rothenberg, S.E., McKee, L., Gilbreath, A., Yee, D., Connor, M., and Fu, X.W., “Evidence for short-range transport of atmospheric mercury to a rural, inland site,” Atmos. Environ., 44, 1263-1273, 2010.
Schroeder, W.H., Yarwood, G., and Niki, H., “Transformation processes involving mercury species in the atmosphere - results from a literature survey,” Water Air Soil Poll, 56, 653-666, 1991.
Schroeder, W.H. and Munthe, J., “Atmospheric mercury-an overview,” Atmos. Environ., 32, 809-822, 1998.
Schleicher, N.J., Schäfer, J., Blanc, G., Chen, Y., Chai, F., Cen, K., and Norra S., “Atmospheric particulate mercury in the megacity Beijing: Spatio-temporal variations and source apportionment,” Atmos. Environ., 109, 251-261, 2015.
Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaeglé , L., and Jaffe, D., “Chemical cycling and deposition of atmospheric mercury: global constraints from observations,” J. Geophys. Rec., 112(D2), 1-14, 2007.
Siudek, P., Falkowska, L., Frankowski, M., and Siepak, J., “An investigation of atmospheric mercury accumulated in the snow cover from the urbanized coastal zone of the Baltic Sea, Poland,” Atmos. Environ., 95, 10-19, 2014.
Lyman, S.N. and Gustin, M.S., “Speciation of atmospheric mercury at two sites in northern Nevada, USA,” Atmos. Environ., 42, 927-939, 2008.
Lyman, S.N. and Gustin, M.S., “Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A,” Sci. Total Environ., 408, 431-438, 2009.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou Yang, C.F., and Wang, S.H., “Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan,” Atmos. Environ., 44, 2393-2400, 2010.
Sheu, G.R., Lin, N.H., Lee, C.T., Wang, J.L., Chuang, M.T., Wang, S.H., Chi, K.H., and Yang-Ou, C.F., “Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment,” Atmos. Environ., 78, 174-183, 2013.
Shon, Z.H., Kim, K.H., Song, S.K., Kim, M.Y., and Lee, J.S., “Environmental fate of gaseous elemental mercury at an urban monitoring site based on long-term measurements in Korea (1997–2005),” Atmos. Environ., 42, 142-155, 2008.
Slemr, F., Schuster, G., and Seiler, W., “Distribution, speciation and budget of atmospheric mercury,” J. Atmos. Chem., 3, 407-434, 1985.
Steen, A.O., Berg, T., Dastoor, A.P., Durnford, D.A., Hole, .L.R., and Pfaffhuber, K.A., “Dynamic exchange of gaseous elemental mercury during polar night and day,” Atmos. Environ., 43, 5604-5610, 2009.
Subir, M., Ariya, P.A., and Dastoor, A.P., “A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters – Fundamental limitations and the importance of heterogeneous chemistry,” Atmos. Environ., 45, 5664-5676, 2011.
Sun, L.M., Wang, L.F., Yuan, D.X., Liu, S.S., Zhang, S.Y., Gao, L.G., and Zhu, Y., “The extent of the influence and flux estimation of volatile mercury from the aeration pool in a typical coal-fired power plant equipped with a seawater flue gas desulfurization system,” Sci. Total Environ., 444, 559-564, 2013.
UNEP , Gobal mercury assessment, 2003.
UNEP, Study on mercury-emitting sources, including emissions trends and cost and effectiveness of alternative control measures, 2010.
UNEP , Gobal mercury assessment, 2013.
Watras, C.J., Morrison, K.A., Rubsam, J.L., and Rodger. B., “Atmospheric mercury cycles in northern Wisconsin,” Atmos. Environ., 43, 4070-4077, 2009.
Wan, Q., Feng, X.B., Lu, J., Zheng, W., Song, X.J., Li, P., Han, S.J., and Xu, H., “Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes,” Environ. Res., 109, 721-727, 2009.
Witt, M.L.I., Mather, T.A., Baker, A.R., Hoog, J.C.M.D., and Pyle, D.M. “Atmospheric trace metals over the south-west Indian Ocean: Total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios,” Mar. Chem., 121, 2-16, 2010.
Ye, X.J., Hu, D., Wang, H.H., Chen, L., Xie, H., Zhang, W., Deng, C.Y., and Wang X.J., “Atmospheric mercury emissions from China's primary nonferrous metal (Zn, Pb and Cu) smelting during 1949–2010,” Atmos. Environ., 103, 331-338, 2015.
Yang, H.D., Rose, N.L., and Battarbee, R.W., “Mercury and lead budgets for lochnagar, a scottish mountain lake and its catchment,” Environ. Sci. Technol 36(7), 1383-1388, 2002.
Yuan, C.S., Sau, C.C., Chen, M.C., Huang, M.H., Chang, S.W., Lin, Y.C., and Chang-Gai Lee.,” Mass Concentration and Size-Resolved Chemical Composition of Atmospheric Aerosols Sampled at the Pescadores Islands during Asian Dust Storm Periods in the Years of 2001 and 2002,” Terrestrial Atmospheric and Oceanic Sciences 15, 857-879, 2013.
Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C.J., Vijayaraghavan, K., Gay, D., Holsen, T.M., Huang, J., Graydon, J.A., St. V.L.,Louis, Castro, M.S., Miller, E.K., Marsik, F., Lu, J., Poissant, Pilote, L., M., and Zhang. K.M., “Assessment of modeled mercury dry deposition over the Great Lakes region,” Environ. Pollut., 161, 272-283, 2012.
Zhang, W., Tong, Y.D., Hu, D., Ou, L.b., and Wang, X.J., “Characterization of atmospheric mercury concentrations along an urban–rural gradient using a newly developed passive sampler,” Atmos. Environ., 47, 26-32, 2012.
Zhang, X.T., Siddiqi, Z., Song, X.J., Mandiwana, K.L., Yousaf, M., and Lu, J., “Atmospheric dry and wet deposition of mercury in Toronto,” Atmos. Environ., 50, 60-65, 2012.
Zhang, Y.Y., Xiu, G.G., Wu, X.F., Moore, C.W., Wang, J.J., Cai, J., Zhang, D., Shi, C., and Zhang, R.J., “Characterization of mercury concentrations in snow and potential sources, Shanghai, China,” Sci. Total Environ., 449, 434-442, 2013.
Zhu, W., Li, Z.G., Chai, X.O., Hao, Y.X., Lin, C.J., Sommar, J., and Feng. X.B., “Emission characteristics and air–surface exchange of gaseous mercury at the largest active landfill in Asia,” Atmos. Environ., 79, 188-197, 2013.
Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., and Munthe, J., “Seasonal mercury concentrations measured in rural air in Southern Poland: contribution from local and regional coal combustion,” Atmos. Environ., 39(39), 7580-7586, 2005.
馮新斌、Jonas Sommar、Oliver Lindqvist、朱泳煊,“大氣活性氣態汞採樣和分析方法”,分析化學研究簡報,2003。
李佳樺,“東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋之建立”,國立中央大學化學研究所碩士論文,2004。
孫天敏,“民眾頭髮中總汞濃度、攝取魚貝量及風險認知之研究”,臺北醫學大學公共衛生研究所碩士論文,2004。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第二十二屆空氣污染控制技術研討會,2005。
林建志,“台灣平地與高山大氣汞監測與比較”,國立中央大學化學研究所碩士論文,2006。
劉俊宏,“高屏沿海地區臭氧垂直剖面特性之調查研究”,輔英科技大學環境工程研究所碩士論文,2006。
李仲根、馮新斌、鄭偉、商立海、付學吾,“大氣中不同形態汞的採樣和分析方法”,中國環境監測,2007。
劉全盛,“南海北部海域大氣汞的時序變化”,台灣大學海洋研究所碩士論文,2007。
張泰華,“亞洲國家(中國,日本,韓國,台灣)大氣汞濃度於2000-2008年之研究”,弘光科技大學環境與安全衛生工程系碩士論文,2007。
張木彬、許桂榮、王家麟、林唐煌、張艮輝、周崇光,“大氣戴奧辛及有害空氣污染物經由長程傳輸機制對國內環境之衝擊評估研究”,環保署/國科會空污防制科研合作計畫,2008。
張芸蓁,“台北地區大氣汞濃度時序變化研究”,明志科技大學生化工程研究所碩士論文,2008。
劉乙琦,“澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析”,國立中山大學環境工程研究所碩士論文,2008。
守富 寛,“石炭燃焼プロセスにおける水銀の挙動と抑制技術”,岐阜大学大学院工学研究科 環境エネルギーシステム専攻,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討” ,國立中山大學環境工程研究所碩士論文,2009。
袁中新,“99年度高雄市汞污染源周界及敏感點大氣汞污染監測計畫書”,高雄市環境保護局計畫報告,2010。
歐陽長風,“台灣氣態污染物背景值變化特徵與大氣傳輸機制之關係”,國立中央大學化學研究所博士論文,2010。
顏晟容,“台灣地區汞之物質流分析及其衝擊評估”,國立台北科技大學環境工程與管理研究所碩士論文,2011。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”, 國立中山大學環境工程研究所碩士論文,2011。
夏新、吴志强、康长安、彭刚华、胡正生、王向明、马芳,“測定汞的原子螢光法和冷原子吸收法比對研究” 中國測試(CHINA MEASUREMENT & TEST),2012。
劉燕,“廈泉金地區大氣汞的時空分佈研究” 廈門大學生態與環境科學系碩士論文,2012。
蔡政謀,“台灣寺廟拜香及金紙焚燒排放含汞污染物之室內外環境日夜變化及排放係數量測”,國立中山大學環境工程研究所碩士論文,2013。
任翼秀,“工業都市及海島地區大氣汞時空分佈、氣固相分佈及長程傳輸之影響”, 國立中山大學環境工程研究所博士論文,2013。
江美菊,“相關係數面面觀”,國立政治大學應用數學系數學教學碩士論文,2013。
張億閔,“台灣海峽周邊地區大氣汞時空分佈及污染來源解析”,國立中山大學環境工程研究所碩士論文,2014。
NOAA空氣資源實驗室網頁: http://ready.arl.noaa.gov/HYSPLIT.php
NASA FIRMS Web Fire Mapper: https://firms.modaps.eosdis.nasa.gov/firemap/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code