Responsive image
博碩士論文 etd-0802115-183305 詳細資訊
Title page for etd-0802115-183305
論文名稱
Title
馬祖地區細懸浮微粒濃度晝夜差異解析及污染源指紋特徵之探討
Diurnal Variation and Source Fingerprints of Fine Particles in the Matsu Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
183
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-09-02
關鍵字
Keywords
日夜變化、粒徑分佈、主成份分析、化學質量平衡受體模式、污染源指紋特徵、細懸浮微粒、馬祖地區
diurnal variation, chemical characteristics, CMB, PCA, fine particles (PM2.5), Matsu Islands
統計
Statistics
本論文已被瀏覽 5699 次,被下載 92
The thesis/dissertation has been browsed 5699 times, has been downloaded 92 times.
中文摘要
近年來,隨著大陸地區經濟及工業快速發展,造成能源的大量消耗及污染物的大量排放,更導致環境的嚴重污染,其中尤以空氣污染最為嚴重。而馬祖地區與中國大陸僅有一水之隔,緊鄰福州地區,位於我國北方前緣,島上雖無大型工業活動,然而在東北季風影響下,常因跨境長程傳輸(long-range transportation)而造成當地空氣品質劣化,故馬祖地區實為我國研究境外傳輸現象之重要空品監測地點。
本研究於2014年夏季至2015年春季於馬祖群島設置4處PM2.5採樣站,分別位於南竿島(NK)、北竿島(BG)、東引島(DY)及西莒島(CK),於採樣期間同步進行PM2.5例行採樣,並於南竿島進行日間(8:00~20:00)與夜間(20:00~08:00)PM2.5採樣。另在PM2.5超過空氣品質標準期間,進行連續5天的密集採樣,採樣項目包括PM2.5濃度及粒徑分佈(0.18 μm≤dp≤18 μm)。此外,本研究亦採集馬祖地區主要逸散污染源及固定污染源之PM2.5樣本,並進一步分析其化學成份(含水溶性離子成份、金屬元素成份、碳成份),藉以建置馬祖地區本土污染源之化學指紋特徵;再配合化學質量平衡受體模式,探討馬祖地區PM2.5之污染源種類及貢獻率。
研究結果顯示,馬祖地區PM2.5大致呈現中間高、外圍低的趨勢,夏季期間PM2.5濃度最高值發生於南竿島(NK),秋季過後PM2.5濃度最高值發生於北竿島(BG),而東引島(DY)的PM2.5濃度均較其他採樣站為低。馬祖地區日間PM2.5皆略高於夜間,唯有冬季期間,發生夜間PM¬2.5濃度高於日間之情形較為頻繁,可能原因為東北季風夾帶人為污染物向南傳輸,加上夜間大氣穩定度較高,空氣污染物擴散不易所導致。由PM2.5的時空分佈及晝夜差異顯示,馬祖地區受到長程傳輸影響外,亦與福州地區背景濃度及大氣擴散條件有密切關係。密集採樣期間,懸浮微粒粒徑分佈呈現雙峰型態,因氣候型態屬於峰前暖區,冷氣團南下將污染物攜至馬祖地區,以細粒峰為主(0.32~0.56 μm),待PM2.5濃度下降後,則逐漸轉變為粗粒峰為主(3.2~5.6 μm)。
水溶性離子成份中以二次無機性氣膠(SO42-、NO3-、NH4+)為主,約佔水溶性離子成份的70%。金屬元素成份以Al濃度最高,其次為Ca、Mg、K、Fe等地殼元素,入秋之後,Zn、Pb、Cr、Ni、As、Cd等工業污染物有明顯上升趨勢。Zn、Pb、Cr、Ti及Mn的日夜濃度比值(D/N)變化範圍較大,顯示PM2.5濃度之日夜差異及季節變化係來自污染來源不同所導致。碳成份中有機碳(OC)含量多半高於元素碳(EC)含量,PM2.5之OC/EC比值介於1.64~3.78之間,顯示馬祖地區PM2.5受到受人為污染源之影響較大,且以二次衍生性污染物為主。
就主成份分析及化學質量平衡受體模式模擬結果顯示,馬祖地區PM2.5污染源種類主要以逸散揚塵、重油燃油鍋爐、海鹽飛沫及二次衍生性氣膠為主,貢獻率主要受到傳輸途徑影響,秋季過後傳輸路徑以北方傳輸型及高壓迴流型為主,造成工業性污染源及二次衍生性氣膠貢獻率上升,其中工業性污染源呈現日間大於夜間的趨勢,而二次衍生性氣膠則反之,生質燃燒於冬、春季之貢獻量較為顯著(8.85%~9.32%)。整體而言,馬祖地區四季境外移入之貢獻率約為28~68%,與夏季背景日貢獻量差異甚大,顯示受到境外長程傳輸污染物影響甚鉅。
Abstract
In recent years, the rapid economic and industrial development of mainland China has significantly increase the consumption of fossil fuel and anthropogenic emissions of air pollutants causing high environmental pollution problems. Although the Matsu Islands have no large-scale industries and pollution sources, which conserve the islands as an ecological environment. However, the ambient air quality is worse possibly due to long-range transportation during the northeastern monsoon period.
This study selected four PM2.5 sampling sites (Nankan, Beigan , Donyin, and Chukuang) located at offshore Islands of the Matsu Islands. PM2.5 sampling was conducted in daytime (8:00-20:00) and nighttime (20:00-08:00) at NK site, which included regular and intensive sampling. Regular sampling was conducted to collect PM2.5 from June 2014 to May 2015, while intensive sampling was conducted to collected PM2.5 with BGI-PQ200 and particle size distribution with a MOUDI at NK site for 5 consecutive days during the poor air quality period. Additionally, in order to clarify the region's pollution sources and their contributions, this study further selected major emission and stationary sources to collected PM2.5 for chemical analysis, which coordinated chemical mass balance (CMB) receptor model to understand the source apportionment of suspended particles.
The results indicated that the lowest average concentration of PM2.5 were observed in the summer. The PM2.5 concentration significantly increased during the northeastern monsoon period. From the perspective of spatial distribution. it showed that PM2.5 concentration decreased from west to east, and BG site was generally higher than other sites in all seasons. Field measurement results showed that PM2.5 concentrations at the Donyin Islands (DY) in different seasons were always lower than other sampling sites.
Chemical composition analysis showed that most abundant water-soluble ionic species of PM2.5 were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 70% of total ions. The metallic elements Al, Ca, Fe, K, Mg dominated the chemical species of particles, other trace metals (eg, Zn, Pb, Cr, Ni, As, and Cd) concentration increased during the northeastern monsoon periods. The daytime and nighttime PM2.5 concentration ratios (D/N) for Zn, Pb, Cr, Ti, and Mn were varied a larger range, indicating that the emission sources of PM2.5 were different in daytime and at nighttime. Organic carbons (OC) were the main species in all seasons, and OC/EC value was between 1.64-3.78.
Results obtained from PCA and CMB receptor modeling showed that major sources of PM2.5 in the Matsu Islands were soil dusts, Fuel Boiler, sea salt and secondary inorganic aerosols. During the northeastern monsoon periods, the major transportation routes were northern transportation (N-type) and anticyclonic outflow (AO-type), in which pollution sources and their contribution were higher during these period. The trend of industrial pollution was higher in the daytime while secondary inorganic aerosols was oppsite. Agricultural burning in winter and spring was generally higher than other sources, which contributed 8.85-9.32% of PM2.5. Overall, cross-boundary transport accounted for 28~68%, showing that the Matsu Islands was significantly influenced by the cross-boundary transport.
目次 Table of Contents
學位論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
表目錄 x
圖目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究範圍與架構 2
第二章 文獻回顧 5
2-1 馬祖地區環境概況 5
2-1-1 馬祖地區環境負荷特性 6
2-1-2 馬祖地區氣候概況 7
2-1-3 馬祖地區空氣品質概況 9
2-2 懸浮微粒物化特性 12
2-3 懸浮微粒化學成份 14
2-3-1 水溶性離子成份 14
2-3-2 金屬元素成份 20
2-3-3 碳成份 22
2-4 懸浮微粒濃度之日夜變化 24
2-5 濱海地區之懸浮微粒相關研究 27
2-6 污染源解析模式 30
2-6-1 逆軌跡模式之應用 30
2-6-2 富集因子分析法 31
2-6-3 主成份分析 32
2-6-4 化學質量平衡受體模式 32
第三章 研究方法 37
3-1 採樣規劃 37
3-1-1 採樣地點規劃 37
3-1-2 採樣時間規劃 38
3-1-3 細懸浮微粒指紋特徵分析 39
3-2 懸浮微粒採樣方法及原理 41
3-2-1 PQ200型PM2.5採樣器 41
3-2-2 微孔均勻沉降衝擊器 42
3-3 質量濃度量測及化學成份分析方法 44
3-3-1 質量濃度量測方法 44
3-3-2 水溶性離子成份分析方法 44
3-3-3 金屬元素成份分析方法 45
3-3-4 碳成份分析方法 46
3-4 品保與品管 47
3-4-1 採樣方法之品保品管 47
3-4-2 分析方法之品保品管 48
3-5 大氣懸浮微粒之污染源解析方法 49
3-5-1 等濃度空間分佈 49
3-5-2 逆軌跡模式模擬 50
3-5-3 富集因子分析法 50
3-5-4 主成份分析法 51
3-5-5 化學質量平衡受體模式 52
第四章 結果與討論 55
4-1 例行採樣期間馬祖地區氣象條件分析 55
4-1-1 風速及風向 55
4-1-2 相對濕度 59
4-1-3 溫度 60
4-2 細懸浮微粒濃度變化趨勢分析 61
4-2-1 細懸浮微粒濃度時空分佈 61
4-2-2 細懸浮微粒濃度日夜變化趨勢 63
4-3 細懸浮微粒化學成份分析 69
4-3-1 水溶性離子成份季節及日夜變化趨勢分析 69
4-3-2 金屬元素成份季節及日夜變化趨勢分析 84
4-3-3 碳成份季節及日夜變化趨勢分析 88
4-3-4 PM2.5中主要化學成份百分比 91
4-4 密集採樣期間細懸浮微粒物化特性變化趨勢 95
4-4-1 密集採樣期間細懸浮微粒濃度變化趨勢 95
4-4-2 密集採樣期間細懸浮微粒化學成份變化趨勢 99
4-5 馬祖地區污染源之細懸浮微粒指紋特徵 107
4-6 馬祖地區細懸浮微粒傳輸路徑分析 112
4-7 細懸浮微粒污染源解析 118
4-7-1 富集因子分析結果 118
4-7-2 主成份分析結果 122
4-7-3 化學質量平衡受體模式解析 128
第五章 結論與建議 137
5-1 結論 137
5-2 建議 139
參考文獻 141
附錄A 分析儀器之品保品管 153
附錄B 分析儀器之檢量線 161
參考文獻 References
Ackermann-Librich, U., Leuenberger, P., Schwartz, J., Schindler, C., SAPALDIA-team., “Lung function and long term exposure to air pollutants in Switzerland,” Journal of Respiratory and Critical Care Medicine, 155, 122-129, 1997.
Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., and Galloo, J.C., “PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone,” Atmospheric Research, 96, 612-625, 2010.
Andreani-Aksoyoglu, S., Keller, J., Prevot, A.S.H., Baltensperger, U., and Flemming, J., “Modeling of secondary aerosols in Switzerland in summer 2003,” Developments in Environmental Sciences, 6, 75-84, 2007.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, 13, 98-104, 1979.
Cao, J.J., Shen, Z., Chow, J.C., Qi, G., and Watson, J.G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosols in Hangzhou, China,” Particuology, 7, 161-168, 2009.
Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., “Chemical and catalytic properties of elemental carbon, “Wolff, G.T., Klimisch, R.L. (Eds.), ” Particulate carbon: atmospheric life cycle,” Plenum Press, New York, 158-181, 1982.
Chen, P.F., Bi, X.H., Zhang, J., Wu, J.H., and Feng, Y.H., “Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China,” Particuology, 20, 104-109, 2015.
Cheng, Y.H. and Tsai, C.J., “Evaporation loss of ammonium nitrate particles during filter sampling,“ Aerosol Science, 28(8), 1553-1567, 1997.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., and Cheng, K.K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996” Atmospheric Environment, 34, 2771-2783, 2000.
Contini, D., Genga. A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterization and source apportionment of PM10 in an urban background site in Lecce,” Atmospheric Research, 95, 40-54, 2010.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., and Richards, L.W., “PM10 and PM2.5 compositions in California's San Joaquin Valley,” Aerosol Science and Technology. 18, 105-128, 1993.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., and Lawson, D.R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, 2061-2080, 1994.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study,” Chemosphere, 54, 185-208, 2004.
Colbeck, I. and Harrison, R.M., “Ozone-secondary aerosol-visibility relationships in northwest England,” Science of the Total Environment, 34, 87-100, 1984.
Contini, D., Genga. A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterisation and source apportionment of PM10 in an urban background site in Lecce,” Atmospheric Research, 95, 40-54, 2010.
Dai, W., Gao, J., Cao, G., and Ouyang, F., “Chemical composition and source identification of PM2.5 in the suburb of Shenzhen, China,” Atmospheric Research, 122, 391-400, 2013.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Dongarrà, G., Manno, E., Varrica, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41, 7977-7986, 2007.
Dongarrà, G, Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., “Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates,” Atmospheric Environment, 44, 5244-5257, 2010.
Enamoraddo-Baez, S.M., Gómez-Guzmán, J.M., Chamizo, E., and Abrill, J.M.,” Levels of 25 trace elements in high-volume air filter samples from Seville (2001–2002): Sources, enrichment factors and temporal variations,” Atmospheric Research, 155, 118-129, 2015.
Fang, G.C., Chang, C.N., Wu, Y.S., Fu, P.C., Yang, D.G., and Chu, C.C., “Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan,” Science of the Total Environment, 234, 203-212, 1999.
Fang, G.C., Chang, C.N., Wu, Y.S., Wang, V., Fu, P.C., Yang, D.G., Chen, S.C., and Chu, C.C., “The study of fine and coarse particles, and metallic elements for the daytime and night-time in a suburban area of central Taiwan, Taichung,” Chemosphere, 41, 639-644, 2000.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., “Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles,” Environmental Science and Technology 20, 580-589, 1986.
Gomiscek, B., Frank, A., Puxbaum, H., Stopper, S., Preining, O., and Hauck, H., “Case study analysis of PM burden at an urban and a rural site during the AUPHEP project,” Atmospheric Environment, 38, 3935-3948, 2004.
Hinds, W.C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey & Sons, New York, 1999.
Huang, L.K., Yuan, C.S., Wang, G.Z., and Wang, K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology, 9(1), 32-38, 2011.
Kerminen, V.M., Teinilä, K., Hillamo, R., and Pakkanen, T., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29, 929-942, 1998.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., “Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China,” Science of the Total Environment, 408, 4681-4694, 2010.
Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., “Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India,” Science of the Total Environment, 407, 6196-6204, 2009.
Lee, C.G., Yuan, C.S., Chang, J.C., and Yuan, C., “Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan,” Journal of the Air & Waste Management Association, 55, 1031-1041, 2005.
Lim, J.M., Lee, J,H., Moon, J.H., Chung, Y.S., and Kim, K.H., “Airborne PM10 and metals from multifarious sources in an industrial complex area,” Atmospheric Research, 96, 53-64, 2010.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Liu, G., Li, J., Wu D., and Xu, H.,” Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China,” Particuology, 18, 135-143, 2015.
Lonati, G., Giugliano, M., and Ozgen, S., “Primary and secondary components of PM2.5 in Milan (Italy),” Environment International, 34, 665-670, 2008.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of the Air & Waste Management Association, 47, 167-175, 1997.
Manahan, S.E., “Environmental Chemistry,” 5th Edition, Lewis Publishers, Inc., Chelsea, 1991.
Marcazzan, G.M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan, Italy,” Atmospheric Environment, 35, 4639-4650, 2001.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38, 1345-1355, 2004.
Novakov, T. “Soot in the atmosphere, ” Wolff, G.T., Klimisch, R.L., (Eds.), “Particulate Carbon: Atmospheric Life Cycle,” Plenum, New York, 19-41, 1982.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., and Simoneit, B.R.T., “Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation,” Atmospheric Environment, 27A, 1309-1330, 1993.
Schwartz, J., “Particulate air pollution and chronnic respiratory disease,” Environmental Research, 62, 7-13, 1994.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D., “Particulate air pollution and acute health effects,” Lancet, 345, 176-178, 1995.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics : from Air Pollution to Climate Change,” Wiley-Interscience, New York , 2006.
Solomon, P.A. and Moyers, J.L., “Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the Phoenix haze,” Science of the Total Environment, 36, 169-175, 1984.
Sudheer, A.K. and Sarin, M.M., “Carbonaceous aerosols in MABL of Bay of Bengal: Influence of continental outflow,” Atmospheric Environment, 42, 4089-4100, 2008.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los Angeles summer midday particulate organic carbon: primary and secondary aerosol,” Environmental Science & Technology, 25, 1788-1793, 1991.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS,” Atmospheric Environment, 29, 3527-3544, 1995.
Pakkanen, T.A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30, 2475-2482, 1996.
Park, S.S., Kim, Y.J., and Fung, K., “Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea,” Atmospheric Environment, 35, 657-665, 2001.
Pipalatkar, P., Khaparde, V.V., Gajghate1, D.G., and Bawase, M.A., “Source apportionment of PM2.5 using a CMB model for a centrally located Indian City,” Aerosol and Air Quality Research, 14, 1089-1099, 2014.
Puxbaum, H. and Wopenka, B., “Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria,” Atmospheric Environment, 18, 573-580, 1984.
Vecchi, R., Marcazzan, G., and Valli, G., “A study on nighttime-daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy),” Atmospheric Environment, 41, 2136-2144, 2007.
Watson, J.G., “The science of fine particulate matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, 1-14, 1998.
Wedepohl, K.H., “The composition of the continental-crust,” Geochimica et Cosmochimica Acta, 59, 1217-1232, 1995.
Whitby, K.T. and Sverdrup, G.M. “California aerosols: their physical and chemical characteristics,“ Environmental Science & Technology, 9, 477-517, 1980.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Journal of Environmental Sciences, 21, 1353-1362, 2009.
Yuan C.S., Hai, C.X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in central inner Mongolia,” China Particuology, 4-304-311, 2006.
Yuan C.S., Liu, Y.C., Hai, C.X., and Zhao, M., “Chemical approaches for identifying the source areas of Asian dusts sampled at the Pescadores Islands, Taiwan,” presented at the International Symposium on Ambient Particulate Matter-Techniques and Policies for Pollution Prevention and Control, Nankai University, Tianjin, China, July 14-19, 2007.
Zhao, M.F., Huang, Z., Qiao, T., Zhang, Y.K., Xiu, G.L., and Yu, J.Z.,” Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: Seasonal variations,” Atmospheric Research, 158-159, 66-78, 2015.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China,” Environmental Monitoring and Assessment, 154, 451-458, 2009.
Zhang, R.J., CaO, J.J., Lee, S,C., Shen, Z.X., and Ho, K.F., “Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing,” Environmental Sciences, 19, 564-571, 2007.
Zhang, X. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,“ Atmospheric Environment, 21, 1779-1789, 1987.
Zhu, L., Chen, Y., Guo, L., and Wang, F.J.,” Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans,” Atmospheric Environment, 69, 131-138, 2013.
Zhung H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmospheric Environment, 33, 4223-4233, 1999.
黃宗正、李正綱、曾錦富,“台中發電廠南方空氣中懸浮微粒特性研究”,第九屆空氣污染控制技術研討會論文集,1992。
鄭淳志,“北桃地區懸浮微粒特性分析”,國立台灣大學環境工程研究所碩士論文,1992。
袁中新、袁景嵩、張瑞正、袁菁、張章堂,“台灣南部地區PM2.5及PM10之時空分佈趨勢探討”,第十五屆空氣汙染控制技術研討會論文集,1998。
楊靖民,“營建工地懸浮微粒中金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1998。
賴順安,“鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1999。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計劃期末報告,1999。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
王証權,“亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性”,國立中央大學環境工程研究所碩士論文,2001。
蔡士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,國立成功大學環境工程學系碩士論文,2002。
鐘博章,“東海南部大氣中金屬元素之濃度、來源及通量研究”,國立台灣大學海洋研究所碩士論文,2002。
黃美倫,“中部空品區大氣氣膠中水溶性離子微粒之特性探討”,國立中興大學環境工程學系碩士論文,2001。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討”,高雄縣環境保護局研究計畫,2003。
林斐然,“東南亞河川流域及海洋之碳循環--子計畫九:南海海域大氣中微量元素及營養鹽成分之傳輸及沉降通量研究(I)研究成果報告”,行政院國家科學委員會專題研究計畫成果報,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計劃報告,2006。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,第二十五空氣污染控制技術研討會論文集,2007。
劉乙琦,“澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析”,國立中山大學環境工程研究所碩士論文,2008。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
鄭曼婷,“台中及南海地區大氣懸浮微粒的化學組成及其污染源貢獻量解析”,中華民國環境工程學會空氣污染控制技術研討會,2010。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文,2009。
蔡協宏,“南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究”,國立中山大學環境工程研究所博士論文,2010。
蕭雅文,“台中地區大氣懸浮微粒的金屬元素特性及其可能來源分析”,國立中興大學環境工程研究所碩士論文,2010。
林聖達,“台西地區大氣懸浮微粒化學組成分析及特性之研究”,環球科技大學環境資源管理研究所碩士論文,2011。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011。
温樵誼,“以逐時監測資料與最小有機碳/元素碳比值法推估二次有機碳含量之研究”,國立高雄第一科技大學環境與安全衛生工程研究所碩士論文,2012。
錢信丞,”斗六地區PM2.5酸性氣膠特徵之研究”,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2012。
謝政廷,“雲林地區河川揚塵及沙塵暴事件懸浮微粒之化學組成特性”,環球科技大學環境資源管理研究所碩士論文,2013。
廖建欽,“閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量解析探討” 國立中山大學環境工程研究所碩士論文,2013。
張正馳,”馬祖地區PM2.5濃度時空分佈及化學成份分析” 國立中山大學環境工程研究所碩士論文,2014。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code