Responsive image
博碩士論文 etd-0802116-010927 詳細資訊
Title page for etd-0802116-010927
論文名稱
Title
應用轉爐石產製透水性反應材料用以處理酸性礦業廢水機制研究
Research of acid mine drainage (AMD) improvement with permeable reactive materials from basic oxygen furnace slag
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-09-02
關鍵字
Keywords
酸礦水、管柱實驗、透水性混凝土、轉爐石、重金屬去除
basic oxygen furnace slags, acid mine drainage, metal removal, column test, pervious concrete
統計
Statistics
本論文已被瀏覽 5638 次,被下載 162
The thesis/dissertation has been browsed 5638 times, has been downloaded 162 times.
中文摘要
一貫作業煉鋼過程中所產生之副產物轉爐石,因其具耐磨及硬度高等特性,具有作為工程材料的再利用價值,其中二分石以上之粒徑,大多已應用於工程原料再生資源之使用,除了細粉料,因其接觸面積小,以及含有free-CaO/MgO,故使用於再生材料時,易發生膨脹以致崩解等情形,較少於工程材料使用。而酸礦排水係以廢礦堆與廢礦區經由雨水逕流與地下水之作用,而形成含有大量硫酸根離子與氫離子之有毒廢水,其低pH值使其他硫化礦物之溶解度因此提高,而產生重金屬,影響流域之生態及水資源之危害,對於環境的預防及整治刻不容緩。本研究使用細粒料之轉爐碴作用於酸性廢水中,探討不同粒徑轉爐碴與其製成之塊材之酸鹼中和能力與去除銅離子及鐵離子之能力,包含最佳液固比、轉爐碴中和反應時間,與管柱連續流之反應結果。
研究結果顯示,由瓶杯試驗可以了解細粒料之轉爐石具有中和酸性廢水的功能,在pH值達到中性偏鹼時,可擁有最好的銅離子及鐵離子去除效能,實驗針對三種不同粒徑之轉爐碴細粉料,可以歸類出液固比在10:1時,具有最佳pH值中和能力,由於此時能恰好達到氫氧化銅以及氫氧化鐵之pH值共同沈澱區間。且以此配比為基礎,再藉由管柱連續淋洗實驗,測得累積液固比之中和酸的能力,最佳累積液固比之區間為液固比在1.0~2.0時,此外針對銅離子與鐵離子的沈澱及吸附作用也相當顯著,累積濃度各約在0.1ppm以下。為使轉爐碴細粒料能方便運用於工程處理,研究中使用透水性混凝土之設計條件,製成五種多孔隙塊材,進行桶槽以及管柱連續流之實驗,實驗結果得知擁有最高孔隙率之塊材,也同樣具有較好的中和能力。
Abstract
Basic oxygen furnace slag (BOF) is the by-product in the consistent steelmaking operation process. As reusable and recycled resources, a lot of coarse parts have been used on engineering materials due to its hardenss and abrasion resistence. Regardless of the reuse with BOF, slag <3.5mm including free CaO/MgO are easily swelling to disintegration. Emanating from mine waste rock and tailings, AMD is primarily a function of mineralogy and the availability of water and oxygen. Upon exposure to oxidizing condition, sulfide minerals easily form acid-rich water with sulfate and hydrogen ions. Characterized by low pH value and high concentration of heavy metal, the AMD is recognized as one of the most serious environmental problem in mining industry. This study presents two parts of experiments, (1)the batch experiment with three different particles size of slag producing the best liquid-solid ratio, (2)making permeable material in column leaching tests and tank leaching test to discuss both the optimization of contact time, pH neutralization balance, and partial removal of copper and iron from artificial AMD.
While value reaches to 7~8 pH, results from the batch experiments show the maximum removal of iron and copper ions. A ratio of 10g slag to 100L AMD was found to be the optimum at which both copper hydroxide and ferric hydroxide precipitation. Based on the L/S ratio at 10:1, the column leaching test were conducted to assess the maximum treatment capacity by using continuous flow measuring the best accumulation ratio at 1.0~2.0 and the residue of iron and copper ions beneath 0.1 ppm. In order to applied on on-site treatment, additional experiments in five permeable specimens were managed which indicate the highest slag replacement attains both the better porosity and neutralization in AMD.
目次 Table of Contents
論文審定書............................................................................................................................ i
誌謝....................................................................................................................................... ii
摘要 ...................................................................................................................................... iii
Abstract ............................................................................................................................... iv
目錄....................................................................................................................................... v
表目錄 ................................................................................................................................ viii
圖目錄................................................................................................................................... x
第一章 緒論..........................................................................................................1
1-1 研究動機與目的.............................................................................................1
1-2 研究內容........................................................................................................2
第二章 文獻回顧..................................................................................................3
2-1 爐鋼爐碴背景資料.........................................................................................3
2-1-1 一貫作業煉鋼製程及爐碴產出 ................................................................. 4
2-1-2 非一貫作業煉鋼製程及爐碴產出 ............................................................. 7
2-1-3 煉鋼爐碴之物化特性 ................................................................................9
2-2 煉鋼爐碴之處置與再利用現況.....................................................................13
2-2-1 國內外爐碴資源化應用現況 ....................................................................13
2-2-2 國內外爐碴資源化實例及相關規範 .........................................................15
2-2-3 煉鋼爐碴之安定化法 ...............................................................................21
2-3 酸礦廢水之成因及背景資料........................................................................24
2-3-1 酸礦廢水成因 .........................................................................................24
2-3-2 酸礦廢水對環境的影響及危害 ............................................................... 28
2-3-3 酸礦廢水處理原理及方法 .......................................................................30
2-4 水中重金屬去除方式...................................................................................33
2-4-1 重金屬沈澱溶解機制 ...............................................................................33
2-4-2 抑制重金屬溶出影響因素 ........................................................................34
2-4-3 鐵與銅離子去除探討 ...............................................................................35
2-5 透水工程材料應用與製備............................................................................37
2-5-1 透水性反應牆(Permeable Reactive Barrier) ...........................................37
2-5-2 透水性混凝土材料 ...................................................................................39
2-6 小結.............................................................................................................41
第三章 研究材料、設備與方法...........................................................................42
3-1 研究架構與流程............................................................................................42
3-2 研究材料與設備............................................................................................45
3-2-1 研究材料..................................................................................................45
3-2-2 實驗藥品..................................................................................................45
3-2-3 實驗設備..................................................................................................46
3-3 實驗及分析方法...........................................................................................48
3-3-1 爐碴之物化特性分析 ............................................................................... 48
3-3-2 轉爐爐碴產製反應塊材基本工程性質分析 ................................................51
3-3-3 塊狀反應材料連續處理效果驗證 ..............................................................52
第四章 結果與討論............................................................................................55
4-1 轉爐碴細粉料基本特性................................................................................55
4-1-1 物理特性..................................................................................................55
4-1-2 化學特性..................................................................................................58
4-1-3 小結..........................................................................................................64
4-2 轉爐碴細粉料作為處理酸礦廢水之可行性....................................................65
4-2-1 人工酸礦廢水配置 ................................................................................... 66
4-2-2 轉爐碴細粉料之環境特性 ....................................................................... 68
4-2-3 轉爐碴細粉料作為反應用基礎材料之效果 ...............................................69
4-2-4 小結..........................................................................................................76
4-3 轉爐碴細粉料作為透水性反應材料之原料探討.............................................77
4-3-1 轉爐碴細粉料中粗顆粒與酸礦廢水反應效果.............................................77
4-3-2 轉爐碴細粉料-細顆粒與酸礦廢水反應效果................................................84
4-3-3 轉爐碴細粉料之連續處理酸礦廢水之結果 .................................................91
4-3-4 小結 ...........................................................................................................94
4-4 轉爐碴細粉料產製之反應塊材處理酸礦廢水之成效.......................................95
4-4-1 轉爐碴細粉料產製反應塊材之工程特性及反應效果....................................95
4-4-2 轉爐碴細粉料產製反應塊材之連續處理酸礦廢水效果 ................................98
4-4-3 小結............................................................................................................100
第五章 結論與建議...............................................................................................101
5-1 結論................................................................................................................101
5-2 建議................................................................................................................102
參考文獻...............................................................................................................103
參考文獻 References
1. Astrup, T., Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J., Christensen, T.H.(2006). Geochemical modeling of leaching from MSWI air-pollution-control residues. Environmental Science and Technology, 40.
2. Barna, R., Moszkowicz P., Gervais, C. (2004).Leaching assessment of road materials containing primary lead and zinc slags. Waste Management, 24, 945-955.
3. Chen, Q.Y., Johnson, D.C., Zhu, L.G., Yuan, M.H., Hill, C.D. (2007).Accelerated carbonation and leaching behavior of the slag from iron and steel making industry. Journal of University of Science and Technology Beijing, 14, 297-301.
4. Chuan, M.C., Shun, G.Y., Liu, J.C. (1663). Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water. Air and Soil pollution, 90, 543-556.
5. Chuanyong J., Xiaoguang M., George P.K. (2004). Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests. Journal of Hazardous Materials, 114, 101–110.
6. Cornelis, G., Jonhson, A., Gerven, T.V., Vandecasteele. (2008).Leaching mechanisms of oxyanionnic metalloid and metal species in alkaline solid wastes: a review. Applied geochemistry, 23, 955-976.
7. Crawford, C.B., Burn, K.N. (1969). Building damage from expansive steel slag backfill. Journal of the Soil Mechanics and Foundation Division, 95, 1325-1334.
8. Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J. (2008). The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 21, 335-351.
9. Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J. (2002). Process identification and model development of contaminant transport in MSWI bittom ash. Waste Management, 22, 531-541.
10. Fallman, A.M. (2000). Leaching of chromium and barium from steel slag in laboratory and field test – a solubility controlled process. Waste Management, 20, 149-154.
11. Huijgen, W.J., Comans, R.N.J. (2006). Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environmental Science and Technology, 40, 2790-2796.
12. Jaana Sorvari, (2003). By-Products in Earth Construction: Environmental Assessments. Journal of environmental engineering, 129, 899-909.
13. Johnson, C.A., Kersten, M., Ziegler, F. (1996). Moor, H.C., Leaching behaviour and solubility controlling solid phases of heavy metals in municipal solid waste incinerator ash. Waste Management, 16, 129-134.
14. Kosson D.S., van der Sloot, H.A. (1997). Integration of testing protocols for evaluation of contaminant release from monolithic and granular wastes. Waste Management.
15. Kosson, D.S., van der sloot, H.A., Sanchez, F. (2002). Garrabrants, A.C., An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science, 19, 159-204.
16. Lide, D.R. (2007). CRC handbook of chemistry and physics, Taylor and Francis, BocaRaton, FL.
17. Muhmood L., Vitta S., Venkateswaran D. (2009). Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cement and concrete research, 39, 102-109.
18. Meima, J.A., van der Weijden, R.D., Eighmy, T.T., Comans, R.N.J. (2002). Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Applied Geochemistry, 17, 1503-1513.
19. NEN 7345: Leaching characteristics of solid earthy and stony building and waste materials.leaching tests. Determination of the leaching of inorganic components from buildings and monolithic waste materials by diffusion test, Dutch Standards-institute.
20. NEN 7341:Leaching characteristics of solid earthy and stony building and waste materials.leaching tests. Determination of the availability for leaching of inorganic components, Dutch Standards-institute.
21. Payne T.E., Itakura T., Comarmond M.J.(2009). Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry. Applied radiation and isotopes, 67, 1269-1276.
22. Proctor D.M., Fehling K.A., Shay E.C. (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental science & technology, 34, 1576-1582.
23. Van der Sloot, H.A. (1996). Present status of waste management in the Netherlands. Waste Management, 16, 375-383.
24. Van der Sloot, H.A., Dijkastra, J.J. (2004). Development of horizontally standardized leaching tests for construction materials: a material based or release based approach. Identical leaching mechanisms for different materials, ECN-04-060.
25. Van der Sloot, H. A., Meeussen, J. C. L., van Zomeren, A., Kosson, D. S. (2006). Devolopment in characterization of waste materials of environmental impact assessment purposes. 88, 72-76.
26. Van der Sloot, H.A. (2000). Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cement and Concrete Research, 1079-1096.
27. Van der Sloot, H.A., Hoede, D., Cresswell, D.J.F., Barton, J.R. (2001). Leaching behaviour of synthetic aggregates. Waste Management.
28. Vehlow, J. (1996). Municipal solid waste management in Germany. Waste Management, 16, 367-374.
29. Wahlstrom, M. (1996). Nordic recommendation for leaching tests for granular waste materials. Science of the Total Environment, 178, 95-102.
30. Xian, X. (1989). Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 113, 257-264.
31. 中國鋼鐵公司(2006)。中鋼社會責任報告書。
32. 王金鐘(2005) 。轉爐石做為基底材料及工程特性之研究。國立成功大學環境工程學系,博士論文。
33. 王明光,王敏昭 (2003) 。實用儀器分析。合記圖書出版社,台北。
34. 江慶陞(1981) 。爐石的資源化。技術與訓練6卷9期,。
35. 行政院環保署廢管處(2009) 。統計資料。
36. 林志棟、陳世晃、張芳志(2001) 。台灣地區推動再生瀝青混凝土廠認可制度及提昇品質教育訓練。再生瀝青混凝土廠品質提升研討會專輯,1-30頁。
37. 施百鴻(2009) 。歐盟CPD及荷蘭BMD指令引進計畫期末報告。財團法人成大研究發展基金會。
38. 張益國(2007)。轉爐石長期溶出特性驗證及台灣土壤涵容標準初步規劃。中華民國環境工程學會,廢棄物處理技術研討會。
39. 張祖恩(2003) 。中鋼公司轉爐石之長期穩定性與環境相容性探討。財團法人成大研究發展基金會。
40. 張高僑(2008)。鈣系爐渣封存二氧化碳行為之研究。國立成功大學環境工程學系碩士論文。
41. 彭宇男(2010) 。不同粒料轉爐石整合性溶出行為探討。輔英科技大學環境工程研究所,碩士論文。
42. 陳崇智(2007) 。資源化產品認證與程序驗證技術期末報告。工業技術研究院。
43. 陳盈良(2009) 。以歐盟pH關聯性溶出試驗探討轉爐石溶出特性報告書。國立成功大學永續環境科技研究中心。
44. 黃兆龍(1997) 。 混凝土性質與行為。詹氏書局,台北。
45. 新日本製鐵株式會社(2009) 。新日本環境社會報告書。
46. 詹詠翔(2009) 。養生條件對轉爐石溶出行為之影響。國立成功大學環境工程學系,碩士論文。
47. 楊貫一(1992) 。爐石資源化中鋼公司爐石應用的過去與未來。第17卷,第一期。
48. 楊景玲(2009) 。朱桂林,孫樹杉,我國鋼鐵渣資源化利用現況及發展趨勢。冶金環境保護。
49. 趙永楠(2003) 。以動態/半動態溶出程序評估都市垃圾焚化底灰長期穩定特性之研究。國立台大學環境工程學研究所,碩士論文。
50. 劉國忠(2001) 。煉鋼爐渣之資源化技術與未來推展方向。環保月刊,第四期十月號。
51. 蘇茂豐,陳立(2005) 。電弧爐煉鋼爐渣之資源化現況與未來展望。工業污染防治,第93 期,第27~51 頁。
52. 蘇茂豐(2010) 。電弧爐爐渣之資源化歷程。綠基會通訊,11~14 頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code