Responsive image
博碩士論文 etd-0802118-003545 詳細資訊
Title page for etd-0802118-003545
論文名稱
Title
多穩態光子晶體能隙調控元件
A Tunable Photonic Crystal Device with Multi-stable Photonic Band Gap
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-10
繳交日期
Date of Submission
2018-09-02
關鍵字
Keywords
自組裝材料、光子晶體能隙調控、光子晶體、聚合物穩固型藍相液晶、藍相液晶
Blue Phase, PSBP, PBG tunings, Photonic Crystal
統計
Statistics
本論文已被瀏覽 5638 次,被下載 49
The thesis/dissertation has been browsed 5638 times, has been downloaded 49 times.
中文摘要
光子晶體是不同折射率材料,以特定週期性堆疊而成的結構,具有體積小、可阻斷特定頻率的光子等特性,光子晶體可以應用在各種光學元件及系統中,例如分光鏡、通訊用光子晶體光纖等。藍相液晶是三維自組裝的光子晶體,具有高度可調性,可透過外場來控制其光子晶體能隙,但由於藍相液晶本身溫寬狹窄限制其應用,因此前人發展出聚合物穩固型藍相液晶,透過直流電場可以調控聚合物穩固型藍相液晶的光子晶體能隙,但是在過去的研究中都無法穩固住調控後的光子晶體能隙,使光子晶體在應用上受到限制,因此我們想要製作多穩態的光子晶體能隙調控元件。
在本研究中透過製作聚合物模板將自組成材料摻入聚合物穩固型藍相液晶中,透過溫度控制自組成材料的鍵結與否,並且在自組成材料斷鍵時施加直流電場調控再降溫使自組成材料鍵結以形成多穩態光子晶體能隙調控元件,本研究分析液晶盒厚度、聚合物濃度以及聚合強度對調控特性的影響,成功製作出移除外加電場仍然維持在調控後的光子晶體能隙元件。
Abstract
Photonic crystals are composed of periodic dielectric and has tiny volume. One of the important properties of photonic crystal is that electromagnetic wave cannot transmit in some specific frequency called photonic band gap(PBG). Photonic crystals can be applied in optic devices and systems such as beam splitter and photonic crystal fibers. However, most of the PBG in photonic crystal is not able to be tuned and therefore limit the applications. On the other hand, blue phase liquid crystal is a kind of self-assembly photonic crystal which has a high tenability and can be tuned by light and electric treatment, but the narrow temperature range restrict the application of blue phase. To broaden the temperature range of blue phase Kikuchi et al. add monomer into blue phase liquid crystal. The polymer stabilized blue phase liquid crystal broaden the temperature range but confine the lattice constant. Someone found that through applying DC voltage, the PBG of PSBP could be tuned and therefore expand the applications of PSBP. However, the tuned PBG is not able to be fixed and therefore limit the applications of photonic crystal. Thus we want to fabricate a device with multi-stable state.
In this research, we doped self-assembly material, HSA, into PSBP to fabricate a tunable photonic crystal device with multi-stable PBG. The HSA will disperse in the device with increasing the temperature. Therefore, we can tune the PBG in higher temperature. In contrast, the HSA will aggregate in the device and fix the tuned PBG with decreasing the temperature. After analyzing the influence of cell gap, percentage of monomer and curing intensity, we successfully fabricate a tunable photonic crystal device with multi-stable PBG.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 xi
第一章 緒論 1
第二章 理論介紹 7
2-1 液晶介紹 7
2-2 液晶的種類及物理特性 8
2-2.1 向列型液晶 10
2-2.2 秩序性參數 10
2-2.3 折射率異向性 12
2-2.4 液晶配向 13
2-2.5 介電係數異向性 14
2-2.6 連續彈性能理論 16
2-2.7 膽固醇液晶 17
2-3 藍相液晶 20
2-3.1 光子晶體 20
2-3.2 光子晶體應用 23
2-3.3 藍相液晶 25
2-4 聚合物穩固型藍相液晶 32
2-4.1 液態光子晶體能隙調控 33
2-4.2 聚合物模板 36
2-5 自組裝理論 39
2-5.1 氫鍵(Hydrogen Bond) 39
2-5.2 自組裝材料之特性 40
第三章 材料與元件製作 44
3-1 材料 44
3-1.1 液晶 44
3-1.2 旋性物質 45
3-1.3 聚合物 46
3-1.4 凝膠 46
3-2 液晶盒製作方式 47
3-3 多穩態可調控能隙之三維光子晶體元件製程 48
第四章 結果與討論 49
4-1 Cell Gap對調控特性的影響 49
4-2 清洗條件對聚合物模板製作的影響 52
4-3 聚合物濃度對調控特性的影響 54
4-4 聚合強度對調控特性的影響 58
4-5 綜合討論 60
第五章 結論與未來展望 69
參考文獻 70
參考文獻 References
[1] Joannopoulos, J.D., et al., Photonic crystals: molding the flow of light. 2011: Princeton university press.
[2] Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58(20), 2059.
[3] Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58(20), 2059.
[4] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., & Kajiyama, T. (2002). Polymer-stabilized liquid crystal blue phases. Nature materials, 1(1), 64.
[5] Chen, C. W., Li, C. C., Jau, H. C., Yu, L. C., Hong, C. L., Guo, D. Y., ... & Lin, T. H. (2015). Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals. ACS Photonics, 2(11), 1524-1531.
[6] Lin, H. C., Yang, M. R., Tsai, S. F., & Yan, S. C. (2014). Gelator-doped liquid-crystal phase grating with multistable and dynamic modes. Applied Physics Letters, 104(1), 011907.
[7] Castles, F., Day, F. V., Morris, S. M., Ko, D. H., Gardiner, D. J., Qasim, M. M., ... & Coles, H. J. (2012). Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nature materials, 11(7), 599.
[8] F. Reinitzer. Monatsh. Chem., 9 (1888), p. 421.
[9] Demus, D., Goodby, J. W., Gray, G. W., Spiess, H. W., & Vill, V. (Eds.). (2011). Handbook of Liquid Crystals, Volume 2A: Low Molecular Weight Liquid Crystals I: Calamitic Liquid Crystals. John Wiley & Sons.
[10] Yariv, A. (1997). Optical Electronics in Modern Communications, Oxford Series in Electrical and Computer Engineering.
[11] Collings, P. J., & Hird, M. (2017). Introduction to liquid crystals: chemistry and physics. CRC Press.
[12] Nemati, H., Liu, S., Zola, R. S., Tondiglia, V. P., Lee, K. M., White, T., ... & Yang, D. K. (2015). Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter, 11(6), 1208-1213.
[13] Cao, W., Munoz, A., Palffy-Muhoray, P., & Taheri, B. (2002). Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature materials, 1(2), 111.
[14] Lin, S. H., Huang, L. S., Lin, C. H., & Kuo, C. T. (2014). Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Optics express, 22(1), 925-930.
[15] Ge, S. J., Ji, W., Cui, G. X., Wei, B. Y., Hu, W., & Lu, Y. Q. (2014). Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Optical Materials Express, 4(12), 2535-2541.
[16] Wang, C. T., Li, Y. C., Yu, J. H., Wang, C. Y., Tseng, C. W., Jau, H. C., ... & Lin, T. H. (2014). Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding. Optics Express, 22(15), 17776-17781.
[17] Yan, J., Wu, S. T., Cheng, K. L., & Shiu, J. W. (2013). A full-color reflective display using polymer-stabilized blue phase liquid crystal. Applied Physics Letters, 102(8), 081102.
[18] John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 58(23), 2486.
[19] Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58(20), 2059.
[20] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2011). Photonic crystals: molding the flow of light. Princeton university press.
[21] Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143.
[22] Chen, Y. H., Wang, C. T., Yu, C. P., & Lin, T. H. (2011). Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time. Optics express, 19(25), 25441-25446.
[23] Lin, C. H., Wang, Y. Y., & Hsieh, C. W. (2011). Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Optics letters, 36(4), 502-504.
[24] Chien, H. T., Chen, C. C., & Luan, P. G. (2006). Photonic crystal beam splitters. Optics Communications, 259(2), 873-875.
[25] Knight, J. C. (2003). Photonic crystal fibres. nature, 424(6950), 847.
[26] Noda, S., Tomoda, K., Yamamoto, N., & Chutinan, A. (2000). Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289(5479), 604-606.
[27] Panda, R., Upadhyay, M., & Awasthi, S. K. (2017). Temperature Dependent Tuning of Defect Mode inside Photonic Bandgap for Cwdm Applications. Optics, 6(1), 5.
[28] Aluicio-Sarduy, E., Callegari, S., del Valle, D. G. F., Desii, A., Kriegel, I., & Scotognella, F. (2016). Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal. Beilstein journal of nanotechnology, 7, 1404.
[29] Chen, C. W., Jau, H. C., Lee, C. H., Li, C. C., Hou, C. T., Wu, C. W., ... & Khoo, I. C. (2013). Temperature dependence of refractive index in blue phase liquid crystals. Optical Materials Express, 3(5), 527-532.
[30] Lin, Y. T., Jau, H. C., & Lin, T. H. (2013). Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal. Journal of Applied Physics, 113(6), 063103
[31] Zhu, G., Wei, B. Y., Shi, L. Y., Lin, X. W., Hu, W., & Lu, Y. Q. (2013). A fast response variable optical attenuator based on blue phase liquid crystal. Optics express, 21(5), 5332-5337.
[32] Yoshida, H., Tanaka, Y., Kawamoto, K., Kubo, H., Tsuda, T., Fujii, A., ... & Ozaki, M. (2009). Nanoparticle-stabilized cholesteric blue phases. Applied physics express, 2(12), 121501.
[33] Shibayama, S., Higuchi, H., Okumura, Y., & Kikuchi, H. (2013). Dendron‐stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices. Advanced Functional Materials, 23(19), 2387-2396.
[34] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., & Kajiyama, T. (2002). Polymer-stabilized liquid crystal blue phases. Nature materials, 1(1), 64.
[35] Liu, H. Y., Wang, C. T., Hsu, C. Y., & Lin, T. H. (2011). Pinning effect on the photonic bandgaps of blue-phase liquid crystal. Applied optics, 50(11), 1606-1609.
[36] Pollmann, P., & Voss, E. (1997). High pressure optical studies of the chirality and phase behaviour of liquid crystalline blue phases. Liquid crystals, 23(2), 299-307.
[37] Castles, F., Morris, S. M., Hung, J. M. C., Qasim, M. M., Wright, A. D., Nosheen, S., ... & Hill, L. (2014). Stretchable liquid-crystal blue-phase gels. Nature materials, 13(8), 817.
[38] Heppke, G., Jerome, B., Kitzerow, H. S., & Pieranski, P. (1989). Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy. Journal de Physique, 50(19), 2991-2998.
[39] Lin, T. H., Li, Y., Wang, C. T., Jau, H. C., Chen, C. W., Li, C. C., ... & Li, Q. (2013). Red, green and blue reflections enabled in an optically tunable self‐organized 3D cubic nanostructured thin film. Advanced Materials, 25(36), 5050-5054.[
[40] Lai, W. M. (2013). Improvement of Kerr constant of blue phase liquid crystal using templating technique.
[41] Tondiglia, V. T., Natarajan, L. V., Bailey, C. A., Duning, M. M., Sutherland, R. L., Ke-Yang, D., ... & Bunning, T. J. (2011). Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. Journal of Applied Physics, 110(5), 053109.
[42] Tondiglia, V. P., Natarajan, L. V., Bailey, C. A., McConney, M. E., Lee, K. M., Bunning, T. J., ... & White, T. J. (2014). Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Optical Materials Express, 4(7), 1465-1472.
[43] Lee, K. M., Tondiglia, V. P., Lee, T., Smalyukh, I. I., & White, T. J. (2015). Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals. Journal of Materials Chemistry C, 3(34), 8788-8793.
[44] Lee, K. M., Tondiglia, V. P., McConney, M. E., Natarajan, L. V., Bunning, T. J., & White, T. J. (2014). Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics, 1(10), 1033-1041.
[45] Jau, H. C., Lai, W. M., Chen, C. W., Lin, Y. T., Hsu, H. K., Chen, C. H., ... & Lin, T. H. (2013). Study of electro-optical properties of templated blue phase liquid crystals. Optical Materials Express, 3(9), 1516-1522.
[46] Kato, T., Mizoshita, N., Moriyama, M., & Kitamura, T. (2005). Gelation of liquid crystals with self-assembled fibers. In Low Molecular Mass Gelator (pp. 219-236). Springer, Berlin, Heidelberg.
[47] Fuh, A. Y. G., Chiang, J. T., Chien, Y. S., Chang, C. J., & Lin, H. C. (2012). Multistable phase-retardation plate based on gelator-doped liquid crystals. Applied Physics Express, 5(7), 072503.
[48] Khandelwal, H., Debije, M. G., White, T. J., & Schenning, A. P. (2016). Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. Journal of Materials Chemistry A, 4(16), 6064-6069.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code