Responsive image
博碩士論文 etd-0802119-133542 詳細資訊
Title page for etd-0802119-133542
論文名稱
Title
一、水熱合成LiFePO4、CoO和NaCoPO4與其電化學特性的研究 二、高電壓陰極系統電解液添加劑與新型矽陽極高分子黏結劑的研究
1. Hydrothermal synthesis of LiFePO4, CoO, and NaCoPO4 and the study of their electrochemical properties 2. A novel electrolyte additive for high-voltage cathode material and a novel polymeric binder for silicon anode material
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-22
繳交日期
Date of Submission
2019-09-02
關鍵字
Keywords
鈉離子電池、氧化亞鈷、黏結劑、矽負極、固體電解質介面膜、鋰鎳錳正極材料、磷酸鋰鐵、水熱合成法、鋰離子電池、陽極材料、正極電解質介面膜
sodium-ion battery, binder, cobalt oxide, Si anodes, anode material, SEI, LiNi0.5Mn1.5O4, CEI, LiFePO4, hydrothermal, lithium-ion battery
統計
Statistics
本論文已被瀏覽 5670 次,被下載 0
The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times.
中文摘要
本論文分為六個部分:(a)鋰離子電池的介紹,以及陰極,電解質和陽極的組成(第1章)。 (b)一種綠色和簡便方法,使用鐵金屬進行水熱合成LiFePO4(第2章)。 (c)(五氟苯基)二苯基膦作為高功率鋰離子電池中LiNi0.5Mn1.5O4陰極的雙功能電解質添加劑(第3章)。 (d)交聯聚異戊二烯 - 接枝 - 馬來酸酐作為鋰離子電池矽陽極的有效黏結劑(第4章)。 (e)具有優異循環壽命的CoO奈米顆粒作為鋰離子電池的陽極材料(第5章)。 (f)合成純NaCoPO4作為鈉離子電池的陰極和電化學性能(第6章)。

化石燃料,如石油,天然氣和煤炭是運輸和電力的主要能源。然而,燃燒化石燃料會排放溫室氣體,從而導致空氣污染和氣候變化。為了緩解這些問題,環境友好的可再生能源,如風能和太陽能,已被用作替代能源。然而,風能和太陽能是間歇性的,這需要存儲可再生能源並設計有效的存儲技術。電池可以存儲大量能量和電力以滿足能源需求。特別是鋰離子電池(LIB)自1991年商業化以來引起了人們的極大關注。陰極,陽極和電解質是LIB的主要組成部分。必須進一步改進這些組件,並且必須使LIB生產具有成本效益,以滿足不斷增長的能源需求。本研究的目的是探索所有三種電池組件材料。第1章介紹了LIB及其組件。 LIB中的第一組分是陰極材料。在所有LIB陰極材料中,LiFePO4以其優異的熱穩定性,低成本,環境友好性和Li +離子的高可逆性而受到廣泛關注。此外,陰極材料的合成必須是環保且具有成本效益的。在此,使用鐵金屬(FeO)作為鐵源進行水熱合成LiFePO4。 Fe0具有100%的原子效率,可作為還原劑,使合成過程更加環保且價格低廉。通過粉末X射線衍射(XRD)研究了不同溫度下LiFePO4的相轉變,並提出了合理的機理。 XRD圖譜證實了煅燒的LiFePO 4的純度,並且其在0.1C速率下的放電容量為165mAh/g ,在0.5C速率下具有良好的循環壽命。第2章討論了這個過程的結果。

LIB中的第二部分是電解質。 具有> 5V電壓的電解質系統對於獲得具有高能量密度的LIB是必不可少的。 基於碳酸酯的電解質氧化反應超過4.5 V對於Li / Li +。在此,研究了(五氟苯基)二苯基膦(PFPDPP)作為LiNi 0.5 Mn 1.5 O 4的新型,有效且穩定的陰極 - 電解質界面形成添加劑。 使用0.2wt%含PFPDPP的電解質顯著改善LiNi 0.5 Mn 1.5 O 4的電化學性能。 經過300次循環後,添加劑的電容量保持率為71%,添加劑的電容量保持率為53.4%。 循環伏安法和理論密度泛函理論計算表明PFPDPP這個化合物會優先進行氧化反應。 第3章討論了這種方法的結果。

LIB中的第三組分是陽極材料。石墨是最常用的陽極材料,因為它具有優異的循環穩定性。然而,其低電容量理論(372 mAh/g )限制了其高端應用(如電動汽車)的能量供應和功率密度。因此,矽(Si)被認為是有前景的替代陽極材料,由於其高理論鋰化能力(3579mAh/g )和低工作電位(~0.5V vs.Li/Li +)。但是,在充電 - 放電過程中Si的體積顯著變化,這的嚴重的問題必須解決。因此黏結劑的開發是重要的,黏結劑是電極結構中的關鍵組分,在循環過程中對維持電極組件的結構完整性起著至關重要的作用。在此,研究了聚異戊二烯 - 接枝 - 馬來酸酐作為用於LIB的Si陽極的新型可交聯黏結劑。該黏結劑被熱交聯以形成彈性材料,這可以減輕在鋰化 - 脫鋰過程中產生的應力。交聯材料顯示出約3300mAh/g 的高初始充電容量,並且在0.5C速率下可以在200次循環中保持其容量的60%以上。這種穩定的循環壽命可歸因於衍生自交聯材料的三維聚合物網絡。考慮到所用原料的低成本和製備粘合劑的容易性,所提出的方法對於工業應用而言可以是可行且成本有效的解決方案。第4章討論了這種方法的結果。過渡金屬氧化物,例如氧化鈷,作為石墨的替代陽極材料也已被廣泛研究,因為它們與石墨相比具有更高的理論容量。在此,報導了通過溶劑熱法簡單且可擴展地合成Co3O4奈米片和CoO奈米顆粒。與塊狀材料相比,奈米材料由於其超快的鋰化儲存性能而表現出優異的電化學性能。當在700℃下在N2氣氛中煅燒4小時時,合成後的Co 3 O 4納米片形成粒徑為~100-200nm的CoO奈米顆粒。通過粉末XRD,掃描電子顯微鏡(SEM)和充電 - 放電的電化學循環測試來證明合成的納米材料。第5章討論了測試結果。
成本是電池大規模生產的重要因素。由於鈉的天然豐度和低成本,鈉離子電池(SIB)已經獲得了突出地位。然而,為SIB找到合適的陰極和陽極材料具有挑戰性。在此,NaCoPO4被探索作為SIB的陰極材料,並且溶劑熱和水熱方法用於合成純NaCoPO4。根據溶劑和加熱時間,獲得具有不同粒度和形狀的材料。通過粉末XRD,SEM和循環伏安法的儀器證明獲得的粉末。第6章討論了這項工作的結果。

該研究的令人鼓舞的結果可以顯著促進LIB材料的開發。
Abstract
This dissertation is divided into six parts: (a) introduction of lithium-ion batteries, and its components cathode, electrolyte and anode (chapter 1). (b) a green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly (chapter 2). (c) (pentafluorophenyl)diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries (chapter 3). (d) cross-linked polyisoprene-graft-maleic anhydride as an efficient binder for silicon anodes of lithium-ion battery (chapter 4). (e) CoO nanoparticles with superior cycle life as anode material for lithium-ion batteries (chapter 5). (f) synthesis and electrochemical performance of phase pure NaCoPO4 as a cathode for sodium-ion batteries (chapter 6).
Fossil fuels, such as oil, gas, and coal are the main energy resources for transportation and electricity. However, burning of fossil fuels emits greenhouse gases, thereby causing air pollution and climate change. To mitigate these issues, environmentally friendly renewable energy, such as wind and solar energy, have been used as alternative energy sources. However, wind power and solar power are intermittent, which necessitates the need for storing renewable energy and devising an efficient storage technology. Batteries can store large amounts of energy and supply power to meet energy demands. Lithium-ion batteries (LIBs), in particular, have attracted significant attention since their commercialization in 1991. The cathode, anode, and electrolyte are the primary components of LIBs. These components must be further improved and LIB production must be made cost-effective to meet the ever increasing energy demand. The aim of this study is to explore all the three battery component materials. Chapter 1 introduces LIBs and its components. The first component in LIB is a cathode material. Among all the LIB cathode materials, LiFePO4 has received considerable attention for its excellent thermal stability, low cost, environmental friendliness, and high reversibility of Li+ ion. Moreover, the synthesis of cathode materials must be eco-friendly and cost-effective. Herein, LiFePO4 is hydrothermally synthesized using iron metal (Fe0) as the iron source. Fe0 delivers 100% atomic efficiency and acts as an in situ reducing agent, making the synthesis process eco-friendly and inexpensive. Phase evolution of LiFePO4 is studied via powder X-ray diffraction (XRD) at different temperatures, and a plausible mechanism is proposed. The XRD pattern confirms the phase purity of the calcined LiFePO4, and its discharge capacity is 165 mAh g 1 at 0.1 C-rate, with good cycle life at 0.5 C-rate. Chapter 2 discusses the results of this process.
The second component in LIB is electrolyte. Electrolyte systems with >5 V electrochemical window are essential to obtain LIBs with a high energy density. Carbonate-based electrolytes undergo oxidation beyond 4.5 V vs Li/Li+. Herein, (pentafluorophenyl)diphenylphosphine (PFPDPP) is investigated as a novel, effective, and stable cathode–electrolyte interface-forming additive for LiNi0.5Mn1.5O4. The electrochemical performance of LiNi0.5Mn1.5O4 is considerably improved using a 0.2 wt% PFPDPP-containing electrolyte. After 300 cycles, the capacity retention is 71% with the additive and 53.4% without the additive. Cyclic voltammetry and theoretical density functional theory calculations reveal that PFPDPP undergoes preferential oxidation. Chapter 3 discusses the results of this approach.
The third component in LIB is anode material. Graphite is the most commonly used anode material due to its excellent cycle stability. However, its low theoretical gravimetric lithiation capacity (372 mAh g 1) limits its energy supply and power density for high-end applications such as electric vehicles. Owing to its high theoretical lithiation capacity (3579 mAh g 1) and low working potential (~0.5 V vs. Li/Li+), silicon (Si) is considered a promising alternative anode material. However, the volume of Si considerably changes during the charge–discharge process, which must be addressed before utilizing its interesting electrochemical properties. Binder, a key component in the electrode structure, plays a vital role in maintaining the structural integrity of electrode components during cycling. Herein, polyisoprene-graft-maleic anhydride is explored as a novel cross-linkable binder for the Si anode of LIBs. This binder is thermally cross-linked to form an elastic material, which can relieve the stress incurred during the lithiation–delithiation process. The cross-linked material displays a high initial charge capacity of ~3300 mAh g 1 and can retain more than 60% of its capacity over 200 cycles at 0.5 C-rate. This stable cycle life can be attributed to the three-dimensional polymeric network derived from the cross-linked material. Considering the low cost of the starting materials used and the ease of preparing the binder, the proposed approach can be a viable and cost-effective solution for industrial applications. Chapter 4 discusses the results of this approach. Transition metal oxides, such as cobalt oxides, have also been extensively researched as alternative anode materials for graphite because of their higher theoretical capacities compared to graphite. Herein, a simple and scalable synthesis of Co3O4 nanosheets and CoO nanoparticles via a solvothermal method is reported. Compared with bulk materials, nanomaterials exhibit superior electrochemical performances owing to their ultrafast lithium storage property. The as-synthesized Co3O4 nanosheets form CoO nanoparticles with a particle size of ~100–200 nm when calcined at 700°C for 4 h in an N2 atmosphere. The synthesized nanomaterials are characterized via powder XRD, scanning electron microscopy (SEM), and charge–discharge cycle tests. Chapter 5 discusses the test results.
Cost is a vital factor for the mass production of batteries. Because of natural abundance and low cost of sodium, sodium-ion batteries (SIBs) have gained prominence. However, finding the right cathode and anode materials for SIBs is challenging. Herein, NaCoPO4 is explored as a cathode material for SIBs, and solvothermal and hydrothermal methods are used for synthesizing phase-pure NaCoPO4. Depending on the solvent and heating time, materials with different particle sizes and shapes are obtained. The thus-obtained powders are characterized via powder XRD, SEM, and cyclic voltammetry techniques. Chapter 6 discusses the results of this work.
The encouraging outcomes of this study can significantly contribute to the development of LIB component materials.
目次 Table of Contents
Abstract……………………………………………………………......………iii
Chapter 1 Background and Introduction
1.1 Introduction of lithium-ion batteries…………………………………………………….…2
1.2 Working principle of lithium-ion batteries………………………………………....………4
1.3 Positive electrode-active materials…………………………………………………………6
1.3.1 Synthesis methods for LiFePO4…………………………………………………..…9
1.3.2 Hydrothermal method…………………………….………………………....……..10
1.3.3 Solid-state method……………………..………….……………………….………12
1.3.4 Sol-Gel method………………………………………..………….………………..13
1.3.5 Carbothermal reduction………………………………………………….………...14
1.3.6 Microwave processing……………………………………………………………..14
1.4 Electrolyte materials……………………………………………………………...………15
1.5 Negative electrode-active materials………………………………………...……….……19
1.5.1 Silicon anode material………………………………….……………………….…..19
1.5.2 Effect of binders in silicon anodes………………………………….…………..…...20
1.5.3 CoO and Co3O4 (conversion-type anode materials).......……………………………22
1.6 Sodium-ion battery……………………………………………..…….…...……………...23


Chapter 2 A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly

2.1 Introduction……………………………………………………………………………… 25
2.2 Experimental…………………………………………………………………….......……27
2.3 Results and Discussion…………………………………………………………............…28
2.4 Conclusions………………………………………………………………………………35
2.5 Supporting Information
2.5.1 Materials………………………………………………………………………..….37
2.5.2 Elemental analysis…………………………………………………………………37
2.5.3 Rietveld refinement……………………………………………………….………..38
2.5.4 XRD……………………………………………………………………….……….39
2.5.5 SEM………………………………………………………………………………..40
2.5.6 XPS………………………………………………………………………………...41


Chapter 3 (Pentafluorophenyl)diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries
3.1 Introduction………………………………………………….…….......…………………43
3.2 Experimental
3.2.1 Materials and chemicals………………………………………………….……..…..46
3.2.2 Instrumentation…………………………………………………………………..…46
3.2.3 Fabrication of the LNMO electrode………………………………………….….….46
3.2.4 Fabrication of the MCMB electrode………………………………………..……….47
3.2.5 Electrochemical measurements……………………………………………....……..47
3.2.6 Characterization of the LNMO electrodes………………………………..………....47
3.2.7 Computational methodology……………………………..………………..…….….47
3.3 Results and Discussion
3.3.1 Stability of electrolytes determined by NMR spectroscopy……………………...…..…48
3.3.2 Electrochemical performance of LNMO electrodes with/without additives……............50
3.3.3 Self-discharge of cells with different electrolytes………………………………….…...55
3.3.4 Electrochemical AC impedance…………………………………………………..…….56
3.3.5 Morphology of LNMO electrodes………………………………………………...…….58
3.3.6 Determination of the concentration of dissolved metal ions in the electrolyte….….…....59
3.3.7 XPS analysis of LNMO electrodes………………………………………...……………61
3.3.8 Electrochemical performance of the MCMB/Li cells with/without additive……..……..64
3.4 Conclusions………………………………………………………………………………66
3.5 Supporting Information…………………………………………………………...………67

Chapter 4 Cross-linked polyisoprene-graft-maleic anhydride as an efficient binder for silicon anodes of lithium-ion battery
4.1 Introduction……………………………………………………………...……………….73
4.2 Experimental
4.2.1 Materials and chemicals………………………………………………….…………74
4.2.2 Instrumentation…………………………………………………………………..…74
4.3 Results and Discussion………………………………………….………………………...75
4.4 Conclusions………………………………………………………………………………81

Chapter 5 CoO nanoparticles with superior cycle life as anode material for lithium-ion batteries
5.1 Introduction………………………………………………………………………………83
5.2 Experimental
5.2.1 Synthesis…………………………………………………………………………..……84
5.2.2 Characterization………………………………………………………………………...84
5.2.3 Electrochemical measurements…………………………………..……………………..84
5.3 Results and Discussion
5.3.1 Cyclic voltammetry………………………………………….….………………………85
5.3.2 Powder XRD……………………………………………………………………………86
5.3.3 Scanning electron microscopy……………………………………………...………..…87
5.3.4 Cycle life…………………………………………………………..….………………...88
5.4 Conclusions………………………………………………………………………………88

Chapter 6 Synthesis and electrochemical performance of phase pure NaCoPO4 as a cathode for sodium-ion batteries
6.1 Introduction…………………………………………………………………...….………90
6.2 Experimental………………………………………………….…………………………..90
6.3 Results and Discussion……………………………………………………………………91
6.4 Conclusion………………………………………………………………….…………….93

Chapter 7
Conclusions……………………………………………………………………………………………………………………………………94

References……………………………………………………………………..97

List of Figures

Figure 1.1 Pricing and energy density of LIBs……………………………………...…………3
Figure 1.2 Energy density comparison different batteries……………………………..………4
Figure 1.3 Schematic representation of LIB……………………………………………...……5
Figure 1.4 Crystal structures of (a) LiCoO2, (b) LiMn2O4, (c) LiFePO4, and (d) LiFeSO4F and (e) their discharge profiles…………………………………………………………………..…7
Figure 1.5 Structure of olivine-type LiFePO4 …………………………………………………9
Figure 1.6 Cycle life of LiFePO4 at a current density of 0.1 A g-1 from 2-4.3 V………………10
Figure 1.7 Hydrothermal process…………………………………………………………….11
Figure 1.8 (a) TEM image of LiFePO4 nanorod and (b) cyclic performance of LiFePO4 nanorods……………………………………………………………………………...………12
Figure 1.9 Synthesis of LiMPO4 (M= Fe and Mn) materials…………………………..……..15
Figure 1.10 Chemical structures of LiPF6, EC, and DEC…………………………………….15
Figure 1.11 SEI-forming additive molecules………………………………………...………18
Figure 1.12 Diagram depicting ternary composition of silicon, graphite carbon, and binder along with volume expansion…………………………………………..…………….………21
Figure 1.13 Different structured polymeric binders for Si……………………………………22
Figure 2.1 (a) XRD pattern of the hydrothermal LiFePO4 powder after calcination at 650 °C for 6 h. SEM images of LiFePO4 (b) after synthesis at 200 °C for 6 h, (c) after further calcination at 650 °C for 6 h. (d) SAED image of the calcined LiFePO4 and its corresponding TEM image (inset), and (e) high-resolution TEM image of the calcined LiFePO4……………30
Figure 2.2 XRD patterns for (a) iron powder and powders at different stages of the LiFePO4 synthesis at (b) room temperature, (c) 100 °C, (d) 200 °C, (e) 200 °C for 1h and (f) 200°C for 6h…………………………………………………………………………………………..…32
Figure 2.3 Schematic illustration of the mechanism of hydrothermal synthesis of LiFePO4 using iron metal (Fe0) powder as iron source…………………………………………………33
Figure 2.4 Cyclic voltammogram of the calcined LiFePO4ǁLi coin cell with a 1.0 M LiPF6-EC/PC/DEC (= 3/2/5)+2% VC electrolyte at a scan rate of 0.1 mV s−1 at 30 °C, (b) comparison of the charge/discharge profiles of the calcined LiFePO4 composite cathode (red) and the control sample LiFePO4 composite cathode (blue), (c) the charge/discharge performance of the calcined LiFePO4ǁLi coin cell at various C-rates and (d) cycle-life performance of the calcined LiFePO4ǁLi coin cell charged/dicharged at 0.5 C………………………………………..……35
Figure 2.5 Graphical abstract……………………………………………………………...…37
Figure S2.1 Rietveld refinement of XRD spectra of hydrothermal LiFePO4 synthesized at 200 °C for 6 h………………………………………………………………………………38
Figure S2.2 Rietveld refinement of XRD spectra of hydrothermal LiFePO4 (200 °C for 6 h) powder after calcination at 650 °C for 6 h………………………………………..………38
Figure S2.3 XRD patterns of the powders synthesized at (a) 150 °C for 0 h, (b) 200 °C for 3 h, and (c) the control sample using FeSO4 as a precursor synthesized at 200 °C for 6 h………………………………………………………………………………………………39
Figure S2.4 SEM images of the powders at different stages of the LiFePO4 synthesis at (a) room temperature, (b) 100 °C , (c) 150 °C, (d) 200 °C, (e) 200 °C for 1 h, (f) 200 °C for 3 h and (g) the control sample using FeSO4 as a precursor synthesized at 200 °C for 6 h………………………………………………………………………..……………………..40
Figure S2.5 XPS of hydrothermal LiFePO4 (a) synthesized at 200 °C for 6 h and (b) further after calcination at 650 °C for 6 h………………………………………………..……41
Figure 3.1 Chemical structure of PFPDPP……………………………….……………..……45
Figure 3.2 19F NMR spectra of (a) the reference electrolyte with 5 vol% water and (b) the 0.2 wt% PFPDPP-containing electrolyte with 5 vol% water. Inset: Magnification of the 19F NMR spectrum of the reference electrolyte with 5 vol% water………………………………...……49
Figure 3.3 31P NMR spectra of (a) the reference electrolyte with 5 vol% water and (b) the 0.2 wt% PFPDPP-containing electrolyte with 5 vol% water……………………………...………50
Figure 3.4 CVs of the LNMO cathode in (a) the reference electrolyte (black), (b) the 0.2 wt% PFPDPP-containing electrolyte (blue), and (c) the 0.5 wt% PFPDPP-containing electrolyte (red) at a scanning rate of 0.5 mV s−1…………………………………………………….……52
Figure 3.5 Rate capability of Li|LNMO cells in (a) the reference electrolyte and (b) the 0.2 wt% PFPDPP-containing electrolyte…………………………………………………………53
Figure 3.6 Cycle-life performance and coulombic efficiency of the Li|LNMO cells with (a) the reference electrolyte and (b) the 0.2 wt% PFPDPP-containing electrolyte. The cells were charged and discharged between 3.0 and 5.0 V at a rate of 2 C………………………………..54
Figure 3.7 Relationship between the open-circuit potential of the Li|LNMO cell and the time in (a) the reference electrolyte (black) and (b) the 0.2 wt% PFPDPP-containing electrolyte (red) …………………………………………………………………………………..……………55
Figure 3.8 Nyquist plots of Li|LNMO cells with the (a) reference and (b) 0.2 wt% PFPDPP-containing electrolytes…………………………………………………………………..……57
Figure 3.9 SEM and TEM images of the LNMO electrodes: (a,b) fresh, (c,d) after 300 cycles in the reference electrolyte, and (e,f) after 300 cycles in the 0.2 wt% PFPDPP-containing electrolyte…………………………………………………………………………….………60
Figure 3.10 XPS spectra of LNMO electrodes: (a) fresh, (b) in the reference electrolyte after 300 cycles, and (c) in the 0.2 wt% PFPDPP-containing electrolyte after 300 cycles……………………………………………………………………………...………….61
Figure 3.11 Charge-discharge profiles of MCMB|Li cells with the reference electrolyte (black) and 0.2 wt% PFPDPP-containing electrolyte (red) at a rate of 0.2C……………………..……65
Figure 3.12 Cycle-life performance and coulombic efficiency of the MCMB|Li cells in (a) the reference electrolyte and (b) the 0.2 wt% PFPDPP-containing electrolyte. The cells were charged and discharged between 0.01 and 2.0 V at a rate of 0.2 C………………………….…65
Figure S3.1 XRD patterns of LNMO electrodes: a) fresh, b) in the reference electrolyte after 300 cycles, and c) in the 0.2 wt% PFPDPP-containing electrolyte after 300 cycles…………………………………………………………………………………...… …67
Figure S3.2 ATR-IR spectra of LNMO electrodes: (a) fresh (black), (b) in the reference electrolyte after 300 cycles (red), and (c) in the 0.2 wt% PFPDPP-containing electrolyte after 300 cycles (blue)………………………………………………………………………...……68
Figure S3.3 TEM images of LNMO electrodes: (a,b) fresh, (c,d) in the reference electolyte after 300 cycles, and (e,f) in the 0.2 wt% PFPDPP-containing electrolyte after 300 cycles………………………………………………………………………...…………….…69
Figure S3.4 Charge/discharge curves of the MCMB|Li cells in the reference electrolyte and 0.2 wt% PFPDPP-containing electrolytes. The cells were charged and discharged between 0.01 and 2.0 V at a rate of 0.2 C…………………………………………………………….………70
Figure S3.5 Nyquist plots of MCMB|Li cells with the reference (black) and 0.2 wt% PFPDPP-containing electrolytes (red)…………………………………………………………….……70
Figure S3.6 CVs of MCMB|Li cells with the reference electrolyte (black) and 0.2 wt% PFPDPP-containing electrolytes (red) at a scanning rate of 0.1 mV s–1…………………….…71

Figure 4.1 Photographs of (a) PIGMA and (b) Vulcanized PIGMA (free-standing film)….…76
Figure 4.2 ATR-IR spectra of (a) sulfur, (b) PIGMA and (c) vulcanized PIGMA (PIGMA and 10 wt% sulfur heated at 180 ℃ for 8 h)……………………………………………………….77
Figure 4.3 TGA curves of (a) Sulfur and (b) PIGMA-S………………………………………78
Figure 4.4 Surface morphology of Si electrodes before cycling (a) Si/PVDF, (b) Si/PIGMA, (c) Si/PIGMA-S and after cycling (d) Si/PVDF, (e) Si/PIGMA and (f) Si/PIGMA-S. The length of scale bars is 10 um…………………………………………………………………………79
Figure 4.5 Charge capacity and coulombic efficiency of electrodes (a) Si/PVDF, (b) Si/PIGMA and (c) Si/PIGMA-S at a charge-discharge rate of 0.5C………………………..…79
Figure 4.6 Charge-discharge curves of Si/PIGMA-S………………………………………...80
Figure 4.7 Cyclic voltammograms of (a) Si/PVDF (blue), (b) Si/PIGMA (red), and (c) Si/PIGMA-S (black)…………………………………………………………………….……81
Figure 5.1 Cyclic voltammogram of CoO at a scan rate of 0.1 mV/s for first 3 cycles………..85
Figure 5.2 Powder XRD pattern after hydrothermal reaction at 200°C for 6h………………..86
Figure 5.3 Powder XRD patterns after further calcination at a) 620°C for 5h (blue) and b) 700°C for 4h (green)………………………………………………………………………….87
Figure 5.4 SEM images (a) after hydrothermal synthesis at 200°C for 6h, (b) after further calcination at 620°C for 5h and (c) 700°C for 4h……………………………………………...87
Figure 5.5 Cycle life of CoO…………………………………………………………………88

Fig 6.1 XRD of hydrothermally synthesized compounds…………………………….……....91
Fig 6.2 Cyclic voltammograms of NaCoPO4 at 1mV s-1 from 2-4.6 V in 1M NaPF6 in EC:PC= 1:1 electrolyte………………………………………………………………………………...92
Fig 6.3 Cyclic voltammograms of NaCoPO4 at 1mV s-1 from 2-4.6 V in 1M NaPF6 in EC:PC= 1:1 electrolyte. ……………………………………………………………………………….92
Fig 6.4 SEM images of NaCoPO4 at different conditions of hydrothermal synthesis (a) 180°C/5h (b) 180°C/5h/SDS, (c) 180°C/3h, (d) 180°C/5h (without Na2CO3), (e) 150°C/5h, (f) 180°C/5h/Pyrrole, (g)180°C/5h/EG (h) 180°C/EG (without Na2CO3), and (i) 180°C/5h/H2O………………………………………………………………………………..93


List of Tables

Table 3.1 Theoretical calculations of the HOMO and LUMO energies………………………52
Table 3.2 Rct and RSEI values for the Li|LNMO cells with the (a) reference and (b) 0.2 wt% PFPDPP-containing electrolytes……………………………………………………………...58
Table 3.3 Concentration of dissolved metal ions in the electrolyte as determined by ICP-MS……………………………………………………………………………………………59
Table 3.4 Assignment of peaks from the XPS fitting: (a) fresh LNMO electrode, (b) electrode after 300 cycles in the reference electrolyte, and (c) electrode after 300 cycles in the 0.2 wt% PFPDPP-containing electrolyte……………………………..………………………………..62
Table 3.5 Atomic concentrations on the surface of the LNMO electrodes obtained from the XPS analysis………………………………………………………………………….………63
參考文獻 References
[1] Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J.; et al. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature 2015, 520, 324.
[2] https://energypost.eu/iea-battery-storage-races-to-keep-up-with-solar-and-winds-demand-matching-challenges/.
[3]https://www.theguardian.com/environment/climate-consensus-97 percent/2018/mar/26/study-wind-and-solar-can-power-most-of-the-united-states.
[4] Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18 (5), 252–264.
[5] https://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/1007/Li-Ion_Battery_costs__MP_Final.pdf;jsessionid=11C13DC558A77B21CF48E579CD3A4FFE?sequence=1
[6] Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359.
[7] Mekonnen, Y.; Sundararajan, A.; Sarwat, A. I. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. IEEE 2016, 1–6.
[8] Arunkumar, R.; Anbumalar, S.; AvilaPriya, F.; Poongothai, K. Computational Fluid Analysis of Lithium-Ion Battery Using ANSYS Fluent. Int. J. Sci. Eng. Res. 2015, 6 (4), 74–78.
[9] Liu, C.; Neale, Z. G.; Cao, G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19 (2), 109–123.
[10] Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X. Exploring Metal Organic Frameworks for Energy Storage in Batteries and Supercapacitors. Mater. Today 2017, 20 (4), 191–209.
[11] Chebiam, R. V.; Kannan, A. M.; Prado, F.; Manthiram, A. Comparison of the Chemical Stability of the High Energy Density Cathodes of Lithium-Ion Batteries. Electrochem. Commun. 2001, 3 (11), 624–627.
[12] Capitaine, F.; Gravereau, P.; Delmas, C. A New Variety of LiMnO2 with a Layered Structure. Solid State Ion. 1996, 89 (3), 197–202.
[13] Li, X.; Xu, Y.; Wang, C. Suppression of Jahn–Teller Distortion of Spinel LiMn2O4 Cathode. J. Alloys Compd. 2009, 479 (1), 310–313.
[14] Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S. Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries. Adv. Energy Mater. 2016, 6 (21), 1600906.
[15] Moses, A. W.; Flores, H. G. G.; Kim, J.-G.; Langell, M. A. Surface Properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Appl. Surf. Sci. 2007, 253 (10), 4782–4791.
[16] Chen, Z.; Wang, J.; Chao, D.; Baikie, T.; Bai, L.; Chen, S.; Zhao, Y.; Sum, T. C.; Lin, J.; Shen, Z. Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Sci. Rep. 2016, 6, 25771.
[17] Daniel, C.; Mohanty, D.; Li, J; Wood, D.L. Cathode Materials Review. AIP Conf. Proc. 2014, 1597 (1), 26–43.
[18] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144 (4), 1188–1194.
[19] Park, K. S.; Kang, K. T.; Lee, S. B.; Kim, G. Y.; Park, Y. J.; Kim, H. G. Synthesis of LiFePO4 with Fine Particle by Co-Precipitation Method. Mater. Res. Bull. 2004, 39 (12), 1803–1810.
[20] Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. The Design of a LiFePO4/Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. Angew. Chem. Int. Ed. 2008, 47 (39), 7461–7465.
[21] Yang, S.; Zavalij, P. Y.; Stanley Whittingham, M. Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes. Electrochem. Commun. 2001, 3 (9), 505–508.
[22] Devaraju, M. K.; Honma, I. Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2 (3), 284–297.
[23] Ni, J.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal Preparation of LiFePO4 Nanocrystals Mediated by Organic Acid. J. Power Sources 2010, 195 (9), 2877–2882.
[24] Huang, X.; Yan, S.; Zhao, H.; Zhang, L.; Guo, R.; Chang, C.; Kong, X.; Han, H. Electrochemical Performance of LiFePO4 Nanorods Obtained from Hydrothermal Process. Mater. Charact. 2010, 61 (7), 720–725.
[25] Liu, A.; Liu, Y.; Hu, Z.; Gao, G.; Xu, Y.; Lei, L. Electrochemical Performance of LiFePO4/C Synthesized by Solid State Reaction Using Different Lithium and Iron Sources. J. Phys. Chem. Solids 2011, 72 (6), 831–835.
[26] Sanchez, M. A. E.; Brito, G. E. S.; Fantini, M. C. A.; Goya, G. F.; Matos, J. R. Synthesis and Characterization of LiFePO4 Prepared by Sol–Gel Technique. Solid State Ion. 2006, 177 (5), 497–500.
[27] Beninati, S.; Damen, L.; Mastragostino, M. Fast Sol–Gel Synthesis of LiFePO4/C for High Power Lithium-Ion Batteries for Hybrid Electric Vehicle Application. J. Power Sources 2009, 194 (2), 1094–1098.
[28] Fey, G. T.-K.; Huang, K.-P.; Kao, H.-M.; Li, W.-H. A Polyethylene Glycol-Assisted Carbothermal Reduction Method to Synthesize LiFePO4 Using Industrial Raw Materials. J. Power Sources 2011, 196 (5), 2810–2818.
[29] Yang, L.; Liang, G.; Wang, L.; Zhi, X.; Ou, X. Effect of Consumption Amount of Lithium Salt on the Properties of LiFePO4/C Cathode Materials. J. Alloys Compd. 2010, 496 (1), 376–379.
[30] Weng, S.; Yang, Z.; Wang, Q.; Zhang, J.; Zhang, W. A Carbothermal Reduction Method for Enhancing the Electrochemical Performance of LiFePO4/C Composite Cathode Materials. Ionics 2013, 19 (2), 235–243.
[31] Sun, L. Q.; Cui, R. H.; Jalbout, A. F.; Li, M. J.; Pan, X. M.; Wang, R. S.; Xie, H. M. LiFePO4 as an Optimum Power Cell Material. J. Power Sources 2009, 189 (1), 522–526.
[32] Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Synthesis of Inorganic Solids Using Microwaves. Chem. Mater. 1999, 11 (4), 882–895.
[33] Uematsu, K.; Ochiai, A.; Toda, K.; Sato, M. Solid Chemical Reaction by Microwave Heating for the Synthesis of LiFePO4 Cathode Material. J. Ceram. Soc. Jpn. 2007, 115 (1343), 450–454.
[34] Bilecka, I.; Hintennach, A.; Djerdj, I.; Novák, P.; Niederberger, M. Efficient Microwave-Assisted Synthesis of LiFePO4 Mesocrystals with High Cycling Stability. J. Mater. Chem. 2009, 19 (29), 5125–5128.
[35] Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3 (5), 385–418.
[36] Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J. Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives. Energy Environ. Sci. 2016, 9 (6), 1955–1988.
[37] Jankowski, P.; Wieczorek, W.; Johansson, P. SEI-Forming Electrolyte Additives for Lithium-Ion Batteries: Development and Benchmarking of Computational Approaches. J. Mol. Model. 2016, 23 (1), 6.
[38] Rong, H.; Xu, M.; Xing, L.; Li, W. Enhanced Cyclability of LiNi0.5Mn1.5O4 Cathode in Carbonate Based Electrolyte with Incorporation of Tris(Trimethylsilyl)Phosphate (TMSP). J. Power Sources 2014, 261, 148–155.
[39] Li, P.; Zhao, G.; Zheng, X.; Xu, X.; Yao, C.; Sun, W.; Dou, S. X. Recent Progress on Silicon-Based Anode Materials for Practical Lithium-Ion Battery Applications. Energy Storage Mater. 2018, 15, 422–446.
[40] Liao, D.; Kuang, X.; Xiang, J.; Wang, X. A Silicon Anode Material with Layered Structure for the Lithium-Ion Battery. J. Phys. Conf. Ser. 2018, 986, 012024.
[41] Kim, S. Y.; Lee, J.; Kim, B.-H.; Kim, Y.-J.; Yang, K. S.; Park, M.-S. Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8 (19), 12109–12117.
[42] Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J. A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angew. Chem. Int. Ed. 2012, 51 (35), 8762–8767.
[43] Ashuri, M.; He, Q.; Shaw, L. L. Silicon as a Potential Anode Material for Li-Ion Batteries: Where Size, Geometry and Structure Matter. Nanoscale 2016, 8 (1), 74–103.
[44] Yim, C.-H.; Courtel, F. M.; Abu-Lebdeh, Y. A High Capacity Silicon–Graphite Composite as Anode for Lithium-Ion Batteries Using Low Content Amorphous Silicon and Compatible Binders. J. Mater. Chem. A 2013, 1 (28), 8234–8243.
[45] Choi, N.-S.; Ha, S.-Y.; Lee, Y.; Jang, J. Y.; Jeong, M.-H.; Shin, W. C.; Ue, M. Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries. J Electrochem Sci Technol 2015, 6 (2), 35–49.
[46] Dai, Z.; Mani, U.; Tan, H. T.; Yan, Q. Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? Small Methods 2017, 1 (5), 1700098.
[47] Qin, G.; Xue, S.; Ma, Q.; Wang, C. The Morphology Controlled Synthesis of 3D Networking LiFePO4 with Multiwalled-Carbon Nanotubes for Li-Ion Batteries. CrystEngComm 2014, 16 (2), 260–269.
[48] Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective Materials and Applications for Li Secondary Batteries. Energy Environ. Sci. 2011, 4 (6), 1986–2002.
[49] Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.-C.; Song, H.-K.; Cho, J. Who Will Drive Electric Vehicles, Olivine or Spinel? Energy Environ. Sci. 2011, 4 (5), 1621–1633.
[50] Chang, H.-H.; Chang, C.-C.; Wu, H.-C.; Guo, Z.-Z.; Yang, M.-H.; Chiang, Y.-P.; Sheu, H.-S.; Wu, N.-L. Kinetic Study on Low-Temperature Synthesis of LiFePO4 via Solid-State Reaction. J. Power Sources 2006, 158 (1), 550–556.
[51] Kim, J.-K.; Cheruvally, G.; Choi, J.-W.; Kim, J.-U.; Ahn, J.-H.; Cho, G.-B.; Kim, K.-W.; Ahn, H.-J. Effect of Mechanical Activation Process Parameters on the Properties of LiFePO4 Cathode Material. J. Power Sources 2007, 166 (1), 211–218.
[52] Liu, A. F.; Hu, Z. H.; Wen, Z. B.; Lei, L.; An, J. LiFePO4/C with High Capacity Synthesized by Carbothermal Reduction Method. Ionics 2010, 16 (4), 311–316.
[53] Park, K. S.; Son, J. T.; Chung, H. T.; Kim, S. J.; Lee, C. H.; Kim, H. G. Synthesis of LiFePO4 by Co-Precipitation and Microwave Heating. Electrochem. Commun. 2003, 5 (10), 839–842.
[54] Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J.-M.; Masquelier, C. Room-Temperature Single-Phase Li Insertion/Extraction in Nanoscale LixFePO4. Nat. Mater. 2008, 7, 741.
[55] Doan, T. N. L.; Taniguchi, I. Cathode Performance of LiMnPO4/C Nanocomposites Prepared by a Combination of Spray Pyrolysis and Wet Ball-Milling Followed by Heat Treatment. J. Power Sources 2011, 196 (3), 1399–1408.
[56] Barker, J.; Saidi, M. Y.; Swoyer, J. L. Lithium Iron(II) Phospho-Olivines Prepared by a Novel Carbothermal Reduction Method. Electrochem. Solid-State Lett. 2003, 6 (3), A53–A55.
[57] Kwon, S. J.; Kim, C. W.; Jeong, W. T.; Lee, K. S. Synthesis and Electrochemical Properties of Olivine LiFePO4 as a Cathode Material Prepared by Mechanical Alloying. J. Power Sources 2004, 137 (1), 93–99.
[58] Muraliganth, T.; Murugan, A. V.; Manthiram, A. Nanoscale Networking of LiFePO4nanorods Synthesized by a Microwave-Solvothermal Route with Carbon Nanotubes for Lithium Ion Batteries. J. Mater. Chem. 2008, 18 (46), 5661–5668.
[59] Jugović, D.; Uskoković, D. A Review of Recent Developments in the Synthesis Procedures of Lithium Iron Phosphate Powders. J. Power Sources 2009, 190 (2), 538–544.
[60] Yu, F.; Zhang, J.; Yang, Y.; Song, G. Porous Micro-Spherical Aggregates of LiFePO4/C Nanocomposites: A Novel and Simple Template-Free Concept and Synthesis via Sol–Gel-Spray Drying Method. J. Power Sources 2010, 195 (19), 6873–6878.
[61] Xiang, H.; Zhang, D.; Jin, Y.; Chen, C.; Wu, J.; Wang, H. Hydrothermal Synthesis of Ultra-Thin LiFePO4 Platelets for Li-Ion Batteries. J. Mater. Sci. 2011, 46 (14), 4906–4912.
[62] Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. Particle Morphology, Crystal Orientation, and Electrochemical Reactivity of LiFePO4 Synthesized by the Hydrothermal Method at 443 K. J. Mater. Chem. 2007, 17 (45), 4803–4810.
[63] Chen, J.; Vacchio, M. J.; Wang, S.; Chernova, N.; Zavalij, P. Y.; Whittingham, M. S. The Hydrothermal Synthesis and Characterization of Olivines and Related Compounds for Electrochemical Applications. Solid State Ion. 2008, 178 (31), 1676–1693.
[64] Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle Size Dependence of the Ionic Diffusivity. Nano Lett. 2010, 10 (10), 4123–4127.
[65] Srinivasan, V.; Newman, J. Existence of Path-Dependence in the LiFePO4 Electrode. Electrochem. Solid-State Lett. 2006, 9 (3), A110–A114.
[66] Liang, Y.-P.; Li, C.-C.; Chen, W.-J.; Lee, J.-T. Hydrothermal Synthesis of Lithium Iron Phosphate Using Pyrrole as an Efficient Reducing Agent. Electrochim. Acta 2013, 87, 763–769.
[67] Qin, X.; Wang, X.; Xiang, H.; Xie, J.; Li, J.; Zhou, Y. Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2010, 114 (39), 16806–16812.
[68] Yu, L.; Cai, D.; Wang, H.; Titirici, M.-M. Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries. Nanomaterials 2013, 3 (3), 443–452.
[69] Rangappa, D.; Ichihara, M.; Kudo, T.; Honma, I. Surface Modified LiFePO4/C Nanocrystals Synthesis by Organic Molecules Assisted Supercritical Water Process. J. Power Sources 2009, 194 (2), 1036–1042.
[70] Aimable, A.; Aymes, D.; Bernard, F.; Le Cras, F. Characteristics of LiFePO4 Obtained through a One Step Continuous Hydrothermal Synthesis Process Working in Supercritical Water. Solid State Ion. 2009, 180 (11), 861–866.
[71] Trost, B. M. Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem. Int. Ed. Engl. 1995, 34 (3), 259–281.
[72] Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301–312.
[73] Wang, K.; Cai, R.; Yuan, T.; Yu, X.; Ran, R.; Shao, Z. Process Investigation, Electrochemical Characterization and Optimization of LiFePO4/C Composite from Mechanical Activation Using Sucrose as Carbon Source. Electrochim. Acta 2009, 54 (10), 2861–2868.
[74] Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. J. Am. Chem. Soc. 2011, 133 (7), 2132–2135.
[75] Larcher, D.; Patrice, R. Preparation of Metallic Powders and Alloys in Polyol Media: A Thermodynamic Approach. J. Solid State Chem. 2000, 154 (2), 405–411.
[76] Dokko, K.; Shiraishi, K.; Kanamura, K. Identification of Surface Impurities on LiFePO4 Particles Prepared by a Hydrothermal Process. J. Electrochem. Soc. 2005, 152 (11), A2199–A2202.
[77] Chen, J.; Whittingham, M. S. Hydrothermal Synthesis of Lithium Iron Phosphate. Electrochem. Commun. 2006, 8 (5), 855–858.
[78] Chen, J.; Wang, S.; Whittingham, M. S. Hydrothermal Synthesis of Cathode Materials. J. Power Sources 2007, 174 (2), 442–448.
[79] Shi, Y.; Chou, S.-L.; Wang, J.-Z.; Wexler, D.; Li, H.-J.; Liu, H.-K.; Wu, Y. Graphene Wrapped LiFePO4/C Composites as Cathode Materials for Li-Ion Batteries with Enhanced Rate Capability. J. Mater. Chem. 2012, 22 (32), 16465–16470.
[80] Wang, C.-W.; Sastry, A. M.; Striebel, K. A.; Zaghib, K. Extraction of Layerwise Conductivities in Carbon-Enhanced, Multilayered LiFePO4 Cathodes. J. Electrochem. Soc. 2005, 152 (5), A1001–A1010.
[81] Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Optimizing the Surfactant for the Aqueous Processing of LiFePO4 Composite Electrodes. J. Power Sources 2010, 195 (9), 2835–2843.
[82] Chen, J.; Graetz, J. Study of Antisite Defects in Hydrothermally Prepared LiFePO4 by in Situ X-Ray Diffraction. ACS Appl. Mater. Interfaces 2011, 3 (5), 1380–1384.
[83] Chen, G.; Song, X.; Richardson, T. J. Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition. Electrochem. Solid-State Lett. 2006, 9 (6), A295–A298.
[84] Lin, L.; Wen, Y.; O, J.; Guo, Y.; Xiao, D. X-Ray Diffraction Study of LiFePO4 Synthesized by Hydrothermal Method. RSC Adv. 2013, 3 (34), 14652–14660.
[85] Wang, J.; Sun, X. Understanding and Recent Development of Carbon Coating on LiFePO4 Cathode Materials for Lithium-Ion Batteries. Energy Environ. Sci. 2012, 5 (1), 5163–5185.
[86] Wei, W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Müllen, K. 3D Graphene Foams Cross-Linked with Pre-Encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage. Adv. Mater. 2013, 25 (21), 2909–2914.
[87] Fan, X.; Guan, X.; Ma, J.; Ai, H. Kinetics and Corrosion Products of Aqueous Nitrate Reduction by Iron Powder without Reaction Conditions Control. J. Environ. Sci. 2009, 21 (8), 1028–1035.
[88] Nien, Y.-H.; Carey, J. R.; Chen, J.-S. Physical and Electrochemical Properties of LiFePO4/C Composite Cathode Prepared from Various Polymer-Containing Precursors. J. Power Sources 2009, 193 (2), 822–827.

[89] Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359.
[90] Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery. J. Am. Chem. Soc. 2009, 131 (25), 8984–8988.
[91] Tiwari, B.; Bhattacharya, I. Layered P2- Type Novel Na0.7Ni0.3Mn0.59Co0.1Cu0.01O2 Cathode Material for High-Capacity & Stable Rechargeable Sodium Ion Battery. Electrochim. Acta 2018, 270, 363–368.
[92] Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J. R. Synthesis and Electrochemistry of LiNixMn2 − xO¬4. J. Electrochem. Soc. 1997, 144 (1), 205–213.
[93] Wolfenstine, J.; Allen, J. Ni3+/Ni2+ Redox Potential in LiNiPO4. J. Power Sources 2005, 142 (1), 389–390.
[94] Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J.; Tabuchi, M.; Kageyama, H.; Konishi, T.; Yoshino, A. Cathode Properties of Phospho-Olivine LiMPO4 for Lithium Secondary Batteries. J. Power Sources 2001, 97–98, 430–432.
[95] Wang, D.; Li, X.; Wang, Z.; Guo, H.; Xu, Y.; Fan, Y. Co-Modification of LiNi0.5Co0.2Mn0.3O2 Cathode Materials with Zirconium Substitution and Surface Polypyrrole Coating: Towards Superior High Voltage Electrochemical Performances for Lithium Ion Batteries. Electrochim. Acta 2016, 196, 101–109.
[96] Kim, J.-H.; Huq, A.; Chi, M.; Pieczonka, N. P. W.; Lee, E.; Bridges, C. A.; Tessema, M. M.; Manthiram, A.; Persson, K. A.; Powell, B. R. Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi0.5Mn1.5O4 for Li-Ion Batteries. Chem. Mater. 2014, 26 (15), 4377–4386.
[97] Kim, J.-H.; Pieczonka, N. P. W.; Li, Z.; Wu, Y.; Harris, S.; Powell, B. R. Understanding the Capacity Fading Mechanism in LiNi0.5Mn1.5O4/Graphite Li-Ion Batteries. Electrochim. Acta 2013, 90, 556–562.
[98] Kim, J.-H.; Pieczonka, N. P. W.; Yang, L. Challenges and Approaches for High-Voltage Spinel Lithium-Ion Batteries. ChemPhysChem 2014, 15 (10), 1940–1954.
[99] Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167–1176.
[100] Hu, M.; Pang, X.; Zhou, Z. Recent Progress in High-Voltage Lithium Ion Batteries. J. Power Sources 2013, 237, 229–242.
[101] Yang, L.; Ravdel, B.; Lucht, B. L. Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2010, 13 (8), A95–A97.
[102] Chae, S.; Soon, J.; Jeong, H.; Lee, T. jin; Ryu, J. H.; Oh, S. M. Passivating Film Artificially Built on LiNi0.5Mn1.5O4 by Molecular Layer Deposition of (Pentafluorophenylpropyl)Trimethoxysilane. J. Power Sources 2018, 392, 159–167.
[103] Song, Y.-M.; Han, J.-G.; Park, S.; Lee, K. T.; Choi, N.-S. A Multifunctional Phosphite-Containing Electrolyte for 5 V-Class LiNi0.5Mn1.5O4 Cathodes with Superior Electrochemical Performance. J. Mater. Chem. A 2014, 2 (25), 9506–9513.
[104] Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H. A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures. J. Electrochem. Soc. 1996, 143 (12), 3809–3820.
[105] Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. J. Phys. Chem. C 2013, 117 (31), 15947–15957.
[106] Wang, Y.-S.; Huang, C.-M.; Hsieh, H.-W.; Lin, Y.-F.; Lin, C.-Y.; Lee, J.-T. Effect of Temperature on the Dissolution of Solid Electrolyte Interface on Mesocarbon Microbeads Electrodes in Propylene Carbonate-Based Electrolytes. Electrochim. Acta 2014, 142, 34–42.
[107] Han, Y.-K.; Yoo, J.; Yim, T. Why Is Tris(Trimethylsilyl) Phosphite Effective as an Additive for High-Voltage Lithium-Ion Batteries? J. Mater. Chem. A 2015, 3 (20), 10900–10909.
[108] Zhang, S. S. A Review on Electrolyte Additives for Lithium-Ion Batteries. J. Power Sources 2006, 162 (2), 1379–1394.
[109] Chong, J.; Xun, S.; Song, X.; Liu, G.; Battaglia, V. S. Surface Stabilized LiNi0.5Mn1.5O4 Cathode Materials with High-Rate Capability and Long Cycle Life for Lithium Ion Batteries. Nano Energy 2013, 2 (2), 283–293.
[110] Jo, M. R.; Kim, Y.-I.; Kim, Y.; Chae, J. S.; Roh, K. C.; Yoon, W.-S.; Kang, Y.-M. Lithium-Ion Transport through a Tailored Disordered Phase on the LiNi0.5Mn1.5O4 Surface for High-Power Cathode Materials. ChemSusChem 2014, 7 (8), 2248–2254.
[111] Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Fluorinated Electrolytes for 5 V Lithium-Ion Battery Chemistry. Energy Environ. Sci. 2013, 6 (6), 1806–1810.
[112] Perea, A.; Zaghib, K.; Bélanger, D. Characterization of LiNi0.5Mn1.5O4 Spinel Electrode in the Presence of 1,3,5-Trihydroxybenzene as Additive. J. Mater. Chem. A 2015, 3 (6), 2776–2783.
[113] Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114 (23), 11503–11618.
[114] Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries. ChemPhysChem 2014, 15 (10), 1956–1969.
[115] Xu, M.; Liu, Y.; Li, B.; Li, W.; Li, X.; Hu, S. Tris (Pentafluorophenyl) Phosphine: An Electrolyte Additive for High Voltage Li-Ion Batteries. Electrochem. Commun. 2012, 18, 123–126.
[116] Xu, J.; Hu, Y.; liu, T.; Wu, X. Improvement of Cycle Stability for High-Voltage Lithium-Ion Batteries by in-Situ Growth of SEI Film on Cathode. Nano Energy 2014, 5, 67–73.
[117] Mai, S.; Xu, M.; Liao, X.; Hu, J.; Lin, H.; Xing, L.; Liao, Y.; Li, X.; Li, W. Tris(Trimethylsilyl)Phosphite as Electrolyte Additive for High Voltage Layered Lithium Nickel Cobalt Manganese Oxide Cathode of Lithium Ion Battery. Electrochim. Acta 2014, 147, 565–571.
[118] Matsumoto, K.; Martinez, M.; Gutel, T.; Mailley, S.; De vito, E.; Patoux, S.; Inoue, K.; Utsugi, K. Stability of Trimethyl Phosphate Non-Flammable Based Electrolyte on the High Voltage Cathode (LiNi0.5Mn1.5O4). J. Power Sources 2015, 273, 1084–1088.
[119] Vikramaditya, T.; Chai, J.-D.; Lin, S.-T. Impact of Non-Empirically Tuning the Range-Separation Parameter of Long-Range Corrected Hybrid Functionals on Ionization Potentials, Electron Affinities, and Fundamental Gaps. J. Comput. Chem. 2018, 39 (28), 2378–2384.
[120] Vikramaditya, T.; Lin, S.-T. Assessing the Role of Hartree-Fock Exchange, Correlation Energy and Long Range Corrections in Evaluating Ionization Potential, and Electron Affinity in Density Functional Theory. J. Comput. Chem. 2017, 38 (21), 1844–1852.
[121] Naejus, R.; Damas, C.; Lemordant, D.; Coudert, R.; Willmann, P. Excess Thermodynamic Properties of the Ethylene Carbonate–Trifluoroethyl Methyl Carbonate and Propylene Carbonate–Trifluoroethyl Methyl Carbonate Systems at T= (298.15 or 315.15) K. J. Chem. Thermodyn. 2002, 34 (6), 795–806.
[122] Ding, M. S.; Xu, K.; Zhang, S.; Jow, T. R. Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries Part II. J. Electrochem. Soc. 2001, 148 (4), A299–A304.
[123] Seward, R. P.; Vieira, E. C. The Dielectric Constants of Ethylene Carbonate and of Solutions of Ethylene Carbonate in Water, Methanol, Benzene and Propylene Carbonate. J. Phys. Chem. 1958, 62 (1), 127–128.
[124] Frisch, G.W.T. M. J.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J.; Gaussian, Inc., Wallingford CT, 2013.
[125] Plakhotnyk, A. V.; Ernst, L.; Schmutzler, R. Hydrolysis in the System LiPF6—Propylene Carbonate—Dimethyl Carbonate—H2O. J. Fluor. Chem. 2005, 126 (1), 27–31.
[126] Zheng, L.; Zhang, H.; Cheng, P.; Ma, Q.; Liu, J.; Nie, J.; Feng, W.; Zhou, Z. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for Graphite/LiCoO2 Lithium-Ion Cells at Both Room and Elevated Temperatures: A Comprehensive Understanding with Chemical, Electrochemical and XPS Analysis. Electrochim. Acta 2016, 196, 169–188.
[127] Ye, C.; Tu, W.; Yin, L.; Zheng, Q.; Wang, C.; Zhong, Y.; Zhang, Y.; Huang, Q.; Xu, K.; Li, W. Converting Detrimental HF in Electrolytes into a Highly Fluorinated Interphase on Cathodes. J. Mater. Chem. A 2018, 6 (36), 17642–17652.
[128] Parimalam, B. S.; MacIntosh, A. D.; Kadam, R.; Lucht, B. L. Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF6. J. Phys. Chem. C 2017, 121 (41), 22733–22738.
[129] Bhaskar, A.; Krueger, S.; Siozios, V.; Li, J.; Nowak, S.; Winter, M. Synthesis and Characterization of High-Energy, High-Power Spinel-Layered Composite Cathode Materials for Lithium-Ion Batteries. Adv. Energy Mater. 2015, 5 (5), 1401156.
[130] Julien, C. M. ; M. Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132–154.
[131] Liao, X.; Huang, Q.; Mai, S.; Wang, X.; Xu, M.; Xing, L.; Liao, Y.; Li, W. Self-Discharge Suppression of 4.9 V LiNi0.5Mn1.5O4 Cathode by Using Tris(Trimethylsilyl)Borate as an Electrolyte Additive. J. Power Sources 2014, 272, 501–507.
[132] Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. Study of the Cathode–Electrolyte Interface of LiMn1.5Ni0.5O4 Synthesized by a Sol–Gel Method for Li-Ion Batteries. J. Electrochem. Soc. 2010, 157 (4), A528–A535.
[133] Yoon, T.; Kim, D.; Park, K. H.; Park, H.; Jurng, S.; Jang, J.; Ryu, J. H.; Kim, J. J.; Oh, S. M. Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4 Positive Electrode. J. Electrochem. Soc. 2014, 161 (4), A519–A523.
[134] Bae, S.-Y.; Shin, W.-K.; Kim, D.-W. Protective Organic Additives for High Voltage LiNi0.5Mn1.5O4 Cathode Materials. Electrochim. Acta 2014, 125, 497–502.
[135] Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8 (4), 2658–2665.
[136] Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. ACS Appl. Mater. Interfaces 2016, 8 (19), 12211–12220.
[137] Rohan, R.; Kuo, T.-C.; Chiou, C.-Y.; Chang, Y.-L.; Li, C.-C.; Lee, J.-T. Low-Cost and Sustainable Corn Starch as a High-Performance Aqueous Binder in Silicon Anodes via in Situ Cross-Linking. J. Power Sources 2018, 396, 459–466.
[138] Li, J.; Lewis, R. B.; Dahn, J. R. Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochem. Solid-State Lett. 2007, 10 (2), A17–A20.
[139] Kato, H.; Nakatsubo, F.; Abe, K.; Yano, H. Crosslinking via Sulfur Vulcanization of Natural Rubber and Cellulose Nanofibers Incorporating Unsaturated Fatty Acids. RSC Adv. 2015, 5 (38), 29814–29819.
[140] Gradwell, M. H. S.; Mcgill, W. J. Sulfur Vulcanization of Polyisoprene Accelerated by Benzothiazole Derivatives. I. Comparison of Sulfur and 2-Mercaptobenzothiazole Accelerated Reactions. J. Appl. Polym. Sci. 1995, 58 (12), 2185–2191.
[141] Yuan, W.; Zhang, J.; Xie, D.; Dong, Z.; Su, Q.; Du, G. Porous CoO/C Polyhedra as Anode Material for Li-Ion Batteries. Electrochim. Acta 2013, 108, 506–511.
[142] Zhang, J.; Ren, W.; Zhou, Y.; Li, P.; Xu, L.; Sun, D.; Wu, P.; Zhou, Y.; Tang, Y. Hermetically Coated and Well-Separated Co3O4 Nanophase within Porous Graphitic Carbon Nanosheets: Synthesis, Confinement Effect, and Improved Lithium-Storage Capacity and Durability. Chem. – Eur. J. 2016, 22 (28), 9599–9606.
[143] Rai, A. K.; Anh, L. T.; Gim, J.; Kim, J. One-Step Synthesis of CoO Anode Material for Rechargeable Lithium-Ion Batteries. Ceram. Int. 2013, 39 (8), 9325–9330.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-09-02
校外 Off-campus:開放下載的時間 available 2024-09-02

您的 IP(校外) 位址是 3.149.233.72
現在時間是 2024-04-26
論文校外開放下載的時間是 2024-09-02

Your IP address is 3.149.233.72
The current date is 2024-04-26
This thesis will be available to you on 2024-09-02.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-09-02

QR Code