Responsive image
博碩士論文 etd-0803100-162004 詳細資訊
Title page for etd-0803100-162004
論文名稱
Title
石英與正矽酸鋅單晶的熱蝕研究: 氧化硼缺陷晶格異向與毛細作用力的影響
Thermal Etching of Single Crystal Quartz and Willemite: Effects of Boron Oxide, Defects, Lattice Anisotropy and Capillary Force
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-10
繳交日期
Date of Submission
2000-08-03
關鍵字
Keywords
正矽酸鈹、石英、正矽酸鋅、熱蝕
willemite, quartz, phenakite, thermal etch
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
本論文主要在研究石英單晶在熔融氧化硼中的熱蝕,以及熱蝕對於相同結晶結構(phenakite structure)無機高分子正矽酸鋅與正矽酸鈹單晶的影響。石英單晶的(10 0)、(10 1)與(11 1)天然結晶面與(0001)拋光面,於500℃至700℃,經熔融氧化硼熱蝕後,藉由掃描式電子顯微鏡的觀察,熱蝕型態可區分為三種類型:單獨的差排蝕坑、排列有序的蝕坑與平底的蝕坑。石英單晶高溫的差排運動與蝕刻型態的發展,主要受到α-β位移式(displacive)相變化所引發的塑性和石英原有缺陷種類的影響。藉由這些觀察,熔融氧化硼確為研究石英動力學的極佳熱蝕液。至於正矽酸鹽(phenakite)的熱蝕研究包括三種:在1250℃循環式熱蝕、在700℃熔融氧化硼中熱蝕與室溫鹽酸以及氟酸水溶液的蝕刻。表面預熔、異向晶格蝕刻與缺陷蝕刻,對於正矽酸鋅的蝕刻有重要的影響。第一次熱循環可能引致雜質於差排露頭偏析,使得正矽酸鋅(0001)面上之六邊形差排蝕坑中央處有抗蝕丘產生。反射式紅外線光譜分析顯示,表面預熔物與正矽酸鋅有相同的結構單位,並循富矽之路徑可長成正矽酸鋅或富矽之化合物,表面之富矽化合物並可阻隔其晶面下的熱蝕。穿透式電子顯微鏡觀察證實,正矽酸鋅經過熱循環可產生明顯的多邊形化現象。石英與正矽酸鋅開裂與愈合的現象主要是受毛細作用力的影響。不論熱蝕或化學蝕刻,正矽酸鈹均比相同結晶結構的正矽酸鋅抗蝕,鈹與鋅在配位數4晶格位置能量(site energy)上的差異,對其蝕刻偏好應有重要的影響。
Abstract
This thesis is about thermal etching of quartz single crystals with boron oxide melt and thermal etchings on inorganic polymeric single crystals of orthosilicates, willemite (Zn2SiO4) and phenakite (Be2SiO4), where isolated [SiO4] groups are polymerized by corner-sharing with other tetrahedral groups, such as [ZnO4] and [BeO4]. On the thermal etching of quartz, experiments were performed on quartz (10 0), (0001), (10 1) and (11 1) from 500℃ to 700℃. Three types of etch figures were recognized by scanning electron microscopy: isolated dislocation etch pit, aligned etch pits and flat etch pits. The effects of defect specification and α-β displacive phase transformation of quartz on its development of thermal etch figures were evaluated. By doing so, boron oxide melt was proved to be a useful etchant on the studies of defect types and dynamics of quartz. As for the thermal etching of phenakite type silicate, we conducted thermal-cycle etching of willemite at 1250℃, hydrochloric and hydrofluoric acid etchings of willemite and phenakite at room temperature, and boron oxide melt etching of willemite and phenakite at 700℃. Surface premelting, anisotropic lattice etching and defect etching were found to play important roles on the thermal etching of willemite. Impurity segregation at dislocation outcrops on willemite (0001) should occur in the first thermal cycling in order to nucleate hillocks at the centers of the hexagonal dislocation etch pits. Reflection IR spectroscopic analysis indicated the surface premelt has the same structural units as willemite, although the subsequent crystallization follows a silica rich path. A silica-rich surface coverage impedes the etching of crystal plane underneath. There is significant polygonization and cleaving-healing of willemite single crystal upon thermal cycling according to transmission electron microscopy observation. Phenakite has remarkable chemical and thermal etching resistance in comparison to its isostructure willemite due to site energy difference of Be and Zn in coordination number 4.
目次 Table of Contents
Contents
Page
Acknowledgement iv
Abstract v
Contents vii
List of tables ix
List of figures x

Chapter 1 Research outline and overview 1
Chapter 2 High temperature etching of single crystal quartz by boron oxide 4
2.1. Introduction 4
2.2. Experimental procedures 8
2.3 Results 10
2.3.1 Etch figures 10
2.3.1.1. Isolated etch pit 10
2.3.1.2. Aligned etch pits 11
2.3.1.3. Flat etch pit 13
2.3.1.4. Crack patterns 13
2.3.2. Raman spectroscopic analysis of borosilicate 13
2.4 Discussion 15
2.4.1. Original defects revealed by boron oxide melt etching 15
2.4.2. Defect configurations due to thermal cycling 16
2.4.3. Anisotropic lattice etching by borate 19
2.4.4. Role of boron oxide on etching 19
Chapter 3 High temperature etching of single crystal willemite 21
3.1. Introduction 21
3.2. Experimental procedures 24
3.3. Results 26
3.3.1. Thermal cycle 26
3.3.2. The chemical etching of willemite (0001) and phenakite
(0001) by boron oxide melt and hydrofluoric acid 28
3.3.3. The thermal etching and chemical etching of phenakite 28
3.3.4. Reflection IR spectroscopy analysis on willemite 28
3.3.5. TEM and electron channeling pattern analysis 29
3.4. Discussion 30
3.4.1. Surface melting and crystallization 30
3.4.2. Chemical etching resistance of willemite vs. phenakite 31
3.4.3. Formation of shallow hexagonal pit on willemite (0001) 32
3.4.4. Thermal cycling induced polygonization, cleaving and
healing of willemite 33
Chapter 4 Summary and remarks 34
References
Tables
Figures
參考文獻 References

References
Agustine, F and D. R. Hale (1960), "Topography and Etch Patterns of Synthetic Quartz," J. Chem. Solids, 13, 344-346.
Amelinckx, S and W. Dekeyser (1959), "The Structure and Properties of Grain Boundaries," Solid State Phys., 8, 325-499.
Ardell, A. J., J. M. Christie and J. W. McCormick (1974), "Dislocation Images in Quartz and the Determination of Burgers Vectors," Phil. Mag., 29, 1399-1411.
Bachheimer, J. P. (1980), "An Anomaly in the β-Phase Near the α-β Transition of Quartz," J. Phys. Lett, 41, 559-561.
Ball, A and S. White (1977), "An Etching Technique for Revealing Dislocation Structures in Deformed Quartz Grains," Tectonophysics, 37, T9-T14.
Barns, R. L., P. E. Freeland, E. D. Laudise and J. R. Patel (1978), "Dislocation-free and Low-dislocation Quartz Prepared by Hydrothermal Crystallization," J. Cryst. Growth, 43, 676-686.
Baumhauer, H. (1878), "Aetzversuche an Quarzkrystallen," Z. Kristallogr. Mineral., 2, 117-125.
Baumhauer, H. (1894), Die Resulttate der Ätzmethode in der Krystallographischen Forschung, an einer Reihe von Krystallisierten Körpern Darstellt, Englemann, Leipzig.
Baur, W. H. (1977), "Silicon-oxygen Bond Lengths, Bridging Angles Si-O-Si and Synthetic Low Tridymite," Acta Cryst., B33, 2615-2619.
Bragg, W. L. (1937), "Atomic Structure of Minerals," Cornell Univ. Press, Ithaca, New York.
Brantley, S. L., S. R. Crane, D. Crerar, R. Hellmann, and R. Stallard (1986), "Dissolution at Dislocation Etch Pits in Quartz," Geochim. Cosmochim. Acta, 50, 2349-2361.
Brunner, G. O. (1984), "An Interpretation of the Structures of α- and β-Quartz based on Coulomb Repulsion Forces," Phys. Chem. Minerals, 10, 273-279.
Bunting, E. N. (1930), "Phase Equilibrium in the System SiO2-ZnO," J. Am. Ceram. Soc., 5, 5-10.
Cable, M. (1984), "Principles of Glass Melting"; pp.1-44 in Glass: Science and Technology. Edited by D. R. Uhlmann and N. J. Kreidl. Academic Press, New York.
Cabrera, N. and M. M. Levine (1956), "On the Dislocation Theory of Evaporation of Crystals," Phil. Mag., 1, 450-458.
Cabrera, N., M. M. Levine and J. S. Plaskett (1954), "Hollow Dislocations and Etch Pits," Phys. Rev., 96, 1153.
Cady, W. G. (1946), Piezoelectricity, McGraw Hill, New York.
Carter, C. B. and D. L. Kohlstedt (1981), "Electron Irradiation Damage in Natural Quartz Grains," Phys. Chem. Minerals, 7, 110-116.
Carstens, H. (1968), "The Lineage Structure of Quartz Crystals," Contr. Moneral. And Petrol., 18, 295-304.
Chaklader, A. C. D. (1963), "Deformation of Quartz Crystals at the Transformation Temperature," Nature, 197, 791-792.
Chang, C. C. (1999), On the Development of Thermally Etched Morphology of α-Zn2SiO4 Polycrystals, M. S. thesis, National Sun Yat-sen Univ, Taiwan, R. O. C..
Chang, C.-C. and P. Shen (2000), "Thermal-etching Development of α-Zn2SiO4 Polycrystals: Effects of Lattice Imperfections, Mn-dopant and Capillary Force, " Mater. Sci. Eng., A288, 42-46.
Chouldhary, M. K. (1990), "Dissolution of Polydispersed Silica Grains in Glass Melts- Analysis," J. Am. Ceram. Soc., 73, 3053-3058.
Christie, J. M., D. T. Griggs and N. L. Carter (1964), "Experimental Evidence of Basal Slip in Quartz," J. Geol., 72, 734-756.
Christoph, A. (1973), "Die Untersuchung der Wachmsstruktur von Quarzkristallen duech Atzen," Krist. Tech., 8, 77-93.
Deer, W. A, R. A. Howie and J. Zussman (1992), An Introduction to Rock Forming Minerals, 2nd edition, John Wiley and Sons, New York.
Dollase, W. A. (1965), "Reinvestigation of the Structure of Low Cristobalite," Z. Krist., 121, 369-377.
Fajan, K. and S.W. Barber (1952), "Properties and Structures of Vitreous and Crystalline Boron Oxide," J. Am. Chem. Soc., 74, 2761-2768.
Frank, F.C. (1951), "Capillary Equilibria of Dislocation Crystals," Acta Cryst., 4, 497.
Frondel. C. (1962), Dana's System of Mineralogy, Vol. III, 7th edition, John Wiley and Sons, New York.
Gaines, R.V., H.C.W Skinner, E.E. Foord, B. Mason and A Rosenzweig (1997), Dana's New Mineralogy, John Wiley & Sons, New York.
Gault, H. R. (1949), "The Frequency of Twin Types in Quartz Crystals," Am. Min., 34, 142-162.
Gevers, R. (1953), Nature, 171, 171.
George, H. B. (1994), "Industrial Applications of Silica"; in Silica: Physical Behavior, Geochemistry and Materials Applications. Edited by P. J. Heaney, C. T. Prewitt and G. V. Gibbs, Mineralogical Society of America, Washington, D. C.
Gibbs, R. E. (1925), " The Variation with Temperature of the Intensity of Reflection of X-ray from Quartz and its Bearing on the Crystal Structure," Proc. Roy. Soc. London, A107, 561-570.
Gratz, A. J., J. Tyburczy, J Christie T. Ahrens and P. Pongratz (1988), "Shock Metamorphism of Deformed Quartz," Phys. Chem. Minerals, 16, 221-223.
Greenwood, G. W. and R. H. Johnson (1965), "The Deformation of Metals Under Small Stresses During Phase Transformations," Proc. Roy. Soc. London, A283, 403-422.
Grimm, H. and B. Dorner (1975), "On the Mechanism of the α-β Phase Transformation of Quartz," J. Phys. Chem. Solids, 36, 407-413.
Hair, M. L. and W. Hertl (1973), "Reactivity of Boria-Silica Surface Hydroxyl Groups," J. Phys. Chem., 77, 1965-1969.
Heaney, P. J. (1994), "Structure and Chemistry of the Low-pressure Silica Polymorphs"; in Silica: Physical Behavior, Geochemistry and Materials Applications. Edited by P. J. Heaney, C. T. Prewitt and G. V. Gibbs, Mineralogical Society of America, Washington, D. C.
Heanay, P. J. and D. R. Veblen (1991), "Observation of the α-β Phase Transition in Quartz: a Review of Imaging and Diffraction Studies and Some New Results," Am. Min. 76, 1018-1032.
Heimann, R. B. (1975), Auflösung von Kristallen- Theorie und Technische Anwendung, Springer, New York.
Heyer, W. and E. Wolf (1972), Anorg. Allg. Chem., 393, 50.
Hlavac, J. (1983), The Technology of Glass and Ceramics, Elsevier Scientific, Amsterdam.
Honess, A. P. (1927), The Nature, Origin and Interpretation of the Etch Figures on Crystals, Wiley, New York.
Horn, F. H. (1952), Philos. Mag., 43, 1210.
Hudson, G. A. and F. R. Bacon (1958), "Inhibition of Alkaline Attack on Soda-Lime Glass," Am. Ceram. Soc. Bull., 37, 185-188.
Hurst, V. J. and S. P. Storch (1981), "Regional Variation in the Cell Dimensions of Metamorphic Quartz," Am. Min., 66, 204-212.
Hyde, B. G. and S. Andersson (1988), Inorganic Crystal Structures, Wiley, New York, p.396.
Iler, R. K. (1979), The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, John Wiley and Sons, New York.
Joshi, M. S. and A. S. Vagh (1966), "Dislocations in Cultured Quartz," Jpn. J. Appl. Phys., 5, 289-294.
Joshi, M. S. and A. S. Vagh (1968), "Application of the Selective Etch Method in the Study of Structural Defects in Synthetic Quartz," Sov. Phys. Cryst., 12, 573-580.
Joshi, M. S. and P. N. Kotru (1969), "Hydrothermal Etching of Matched Fractured Prism faces of Quartz," Sov. Phys. Cryst., 15, 83-89.
Joshi, M. S., P. N. Kotru and M. A. Ittyachen (1970), "Revelation of Stepped Dislocations in Amethyst Crystals by Hydrothermal Etching," Am. Min., 63, 744-746.
Joshi, M. S. and B. K. Paul (1977), "Surface Structure of Trigonal Bipyramidal Faces of Natural Quartz Crystals," Am. Min. 62, 122-126.
Kirk, R. E. and D. F. Othmer (1964), Encyclopedia of Chemical Technology, Vol. III, John Wiley and Sons, New York.
Klein, C and C. S. Hurlbut Jr. (1993), Manual of Mineralogy, 21st edition., p.527, John Wiley & Sons, New York.
Konnert, J. H. and D. E. Appleman (1978), "The Crystal Structure of Tridymite," Acta Cryst., B34, 391-403.
Lang, A. R. and V. F. Miuscov (1967), "Dislocations and Fault Surfaces in Synthetic Quartz," J. Appl. Phys, 38, 2477-2483.
Lazorina, E. I. and V. V. Soroka (1974), "Etching of Quartz and Some Features on the Surface Layer," Sov. Phys. Cryst., 18, 651-653.
Le Chatelier, H. (1889), "Sur la Dilation du Quartz," Comptes Rendus de l’Academie des Sciences, 108, 1046-1049.
Lee, C. C. (1989), A Study of the Crystal Growth of Willemite and the Oxidation of Ni2AlTi, Ph.D. Dissertation, National Sun Yat-sen Univ., Taiwan, R. O. C.
LePage, Y. and G. Donnay (1976), "Refinement of the Crystal Structure of Low Quartz," Acta Cryst., B32, 2456-2459.
Leverenz, H. W. and F. Seitz (1939), "Luminescent Materials," J. Appl. Phys., 10, 479-493.
Leydolt, F. (1855), "Methode, die Struktur und Zusammensetzung der Krystalle zu Untersuchen," Sitzungsber. Acad. Wiss. Wien. Math. Naturwiss., 15, 59-81.
Lin, C.-C. (1992), Synthesis, Phase Transformations, and Dissolution Behavior of Zinc Orthosilicate, Ph.D. Dissertation, National Sun Yat-sen Univ., Taiwan, R. O. C.
Lin, C.-C. and P. Shen (1993), "Role of Screw Axes in Dissolution of Willemite," Geochim. Cosmochim. Acta, 57, 1649-1655.
Lin, C.-C. and P. Shen (1995), "Incubation Time of Etch Pits at Dislocation Outcrops," Geochim. Cosmochim. Acta, 59, 2955-2963.
Malin, M. C. and K. S. Egaett (2000), "Evidence for Recent Groundwater Seepage and Surface Runoff on Mars," Science, 288, 2330-2335.
Mamaev, N. A., A. F. Kuznetsov, A. F. Zatsepin and B. V. Shu'lgin (1987), "Reconstruction of Nonsingular Faces of Quartz Crystals in Hydrothermal Conditions," Sov. Phys. Crystallogr., 32,111-115.
McLaren, C. F. Osborne and L. A. Saunders (1971), "X-Ray Topographic Study of Dislocations in Synthetic Quartz," Phys. Stat. Sol. A., 4, 235-247.
Metois J. J. and Heyraud J. C. (1989a), Ultramicroscopy, 31, 73.
Metois J. J. and Heyraud J. C. (1989b), Ultramicroscopy, 50, 3175.
Miuskov, V. F., L. I. Tsinober and L. A. Gordienko (1973), "Deformation Dislocations in Natural Quartz Crystals," Sov. Phys. Crystallogr., 18, 209-211.
Molengraff, G. A. F. (1888), "Studien uber Quarz," Z. Krystallogr. Mineral., 14, 173-201.
Morgan, R. A. and F. A. Hummel (1949), J. Am. Ceram. Soc., 32, 255.
Morrison-Smith, D. J., M. S. Paterson and B. E. Hobbs (1976), "An Electron Microscope Study of Plastic Deformation in Single Crystals of Synthetic Quartz," Tectonophysics, 33, 43-79.
Nielsen J. W. and F. G. Foster (1960), "Unusual Etch Pits in Quartz Crystals," Am. Min., 45, 299-310.
Patel, A. R. and K. S. Raju (1966), "The Etching of Matched Fracture Faces of Quartz," Acta Cryst., 21, 190-192.
Patel, A. R., O. P. Bahl and A. S. Vagh (1965), "Etching of Rhombohedral Cleavages of Quartz," Acta Cryst., 19, 757-759.
Peacor, D. R. (1973), "High Temperature Single-crystal Study of the Cristobalite Inversion," Z. Krist., 138, 274-298.
Pilati T., F. Demartin and C. M. Gramaccioli (1998), " Lattice-dynamical Evaluation of Atomic Displacement Parameters and Thermodynamic Functions for Phenakite Be2SiO4," Phys. Chem. Minerals, 26, 2, 149-155.
Poch, W. (1964), Glastech. Ber., 37, 533.
Poirier, J.-P. (1985), Creep of Crystals, Cambridge Univ. Press, Cambridge, London, 212-228.
Roberts,W. L., T. J. Campbell and G. R. Rapp, Jr. (1990), Encyclopedia of Minerals, 2nd edn., Van Nostrand Reinhold, New York.
Sangwal, K. (1987), Etching of Crystals, North-Holland. And the literatures cited therein.
Scandale, E. and F. Stasi (1983), "Growth defects in Quartz Druse. <a+c> Dislocations," J. Appl. Cryst., 16, 399-403.
Shelby, J. E. and M. C. Nichols (1983), "Effect of Thermal History on the Properties of a Willemite Glass-Ceramic," J. Am. Ceram. Soc., 66, 200-204.
Slack, G. A. and I. C. Huseby (1982), "Thermal Gruneisen Parameters of CdAl2O4, β-Si3N4, and Other Phenakite-type Compounds," J. Appl. Phys., 53, 6817-6822.
Smyth, J. R. and D. L. Bish (1988), Crystal Structures and Cation Sites of the Rock-forming Minerals, Allen and Unwin, Boston.
Sosman, R. B. (1965), The Phases of Silica, Rutgers Univ. Press, New Brunswick, New Jersey.
Spearing, D. R., I. Farnan and J. F. Stebbins, (1992), "Dynamics of the α-β Phase Transition in Quartz and Cristobalite as Observed by In-situ High Temperature 29Si and 17O NMR," Phys. Chem. Minerals., 19, 307-321.
Speer, J. A. and P. H. Bibbe (1982), "Orthosilicate with SiO4 Polymerized to Other Tetrahedral Polyanions," in: Orthosilicate, 2nd edition. Edited by P. H. Ribbe, Mineralogy Society of America, Washington, D. C.
Sun, C (1988), private communication.
Tezuka, Y., S. Shin and M. Ishigame (1991), "Observation of the Silent Soft Phonon in β-Quartz by Means of Hyper-Raman Scattering," Phys. Rev. Lett., 66, 2356-2359.
Trepied, L., J. C. Doukhan and J. Paquet (1980), "Subgrain Boundaries in Quartz Theoretical Analysis and Microscopic Observations," Phys. Chem. Minerals, 5, 201-218.
Tsinzerling, E. V. and Z. A. Mironova (1963), "Revealing Dislocations in Quartz by the Selective Etch Method," Sov. Phys. Cryst., 9, 89-91.
Van Keymeulin, J. (1957), "Dislocations in Quartz and Rutile Single Crystals," Naturwissenschaften, 44, 489.
Vogel, F. L., W. G. Pfann, H. E. Corey and E. E. Thomas (1953), Phys. Rev., 90, 489.
Volskaya, O. B. (1969), "Selective Etchants for Quartz," Sov. Phy. Cryst., 13, 620-622.
Wagner and Ellis (1964),
Wang, Z. L. (2000), "In-situ Structural transformation of Shape-controlled nanocrystals," The International Union of Materials Research Societies- 6th International Conference in Asia, Program and Abstracts, abstract a6.3, 23-26 July.
Wegner, M. W. and J. M. Christie (1983), "Chemical Etching of Deformed Sub-structures in Quartz," Phys. Chem. Minerals., 9, 67-78.
Wegner, M. W. and J. M. Christie (1985), "General Chemical Etchants for Microstructures and Defects in Silicates," Phys. Chem. Minerals., 12, 90-92.
White, G. K. and R. B. Roberts (1988), "Thermal Expansion of Willemite, Zn2SiO4," Aust. J. Phys., 41, 791-795.
Woodcock, S. and J. D. Leyland (1979), "The Choice of Phosphor for Modern CRT Display Applications," Display, July, 69-82.
Wright, A. F. and M. S. Lehmann (1981), "The Structure of Quartz at 25&#730;C and 590 &#730;C Determined by Neutron Diffraction," J. Solid State Chem., 36, 371-380.
Zarzycki, J. (1982), Glasses and Vitreous State, Cambridge University Press, Cambridge.
Zimonyi, G. (1957), "On the Mechanism of the Growth of Quartz Crystals", Acta Phys. Hung., 8, 119.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.42.196
論文開放下載的時間是 校外不公開

Your IP address is 3.144.42.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code