Responsive image
博碩士論文 etd-0803104-164506 詳細資訊
Title page for etd-0803104-164506
論文名稱
Title
單核細胞增多性李斯特菌之特性與檢驗
Characterization and Diagnosis of Listeria monocytogenes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-06
繳交日期
Date of Submission
2004-08-03
關鍵字
Keywords
檢驗、單核細胞增多性李斯特菌
diagnosis method, Listeria monocytogens
統計
Statistics
本論文已被瀏覽 5672 次,被下載 10089
The thesis/dissertation has been browsed 5672 times, has been downloaded 10089 times.
中文摘要
Listeria moncytogens廣泛存在大自然,它能生長在冰箱冷藏溫度、低酸、和高鹽環境中。Listeria monocytogens所引起的李斯特症有高達百分之二十或更高的致死率,使得Listeria monocytogens變成一株重要而著名的食品中毒病原菌。最近經歷一連串食品中毒事件,證明了這株菌具有危害健康的潛在性,因而引起食品安全專家,和公共衛生官員的注意。本論文旨在介紹此株菌的一般特性包括生理和生化特性、致病因子、感染途徑、病徵、治療和流行病學概況。本論文尤其要引介並比較有關Listeria monocytogens傳統和快速檢測方法的優點與缺點。根據美國FDA細菌分析手冊,有關Listeria monocytogens之快速檢測方法主要有三類: 迷你生化檢測套組,免疫化學檢測套組,和基因檢測套組。本論文將各檢測套組所依據的原理、分析方式、技術、商業產品和產品製售的公司均納入討論,各種方法的優缺點和他們的應用範圍也一併討論評估。最後,我們評估傳統檢測和快速檢測方法目前在全世界各地,尤其在美國和歐洲的使用情形與現況。總之,對於Listeria monocytogens這株重要食品中毒菌的診斷,我們相信快速檢測方法和發展中的基因晶片及生物感測器,隨著市場發展和成本降低未來將會持續的成長。
Abstract
Listeria monocytogens can be found widely in nature. It can grow at refrigeration temperature, low pH, and high salt. The disease that it caused a fatality rate of 20% or higher makes L. monocytogens to be a famous foodborn pathogen. After a number of recent foodborn outbreaks, it has been demonstrated that this bacterium poses a significant health risk and has attracted the attention of the food safety professionals and public health officers. This thesis introduces the general characteristics of this bacterium, including its physiological and biochemical traits, virulent factors, infection routes, symptoms, therapy, and epidemiology. This thesis is also especially emphasized on the introduction and comparison of the differences, the advantages, as well as the disadvantages between the traditional and rapid diagnosis methods. According to the US FDA Bacterial Analytical Manual, the rapid tests had been classified into three classes: miniaturized biochemical kits, immunochemical kits, and genetic kits. The principles, formats, techniques, commercial products and its production companies of each diagnosis methods are also incorporated in this thesis. The advantages and disadvantages of these methods and their applications have been assessed. Finally, we also evaluated the market of the traditional methods being used and the rapid tests in the world, including the US, and European Union. In conclusion, the diagnosis of this important bacterium both by rapid methods or newly developed biochip and sensor will continue to grow in the future.
目次 Table of Contents
中文摘要 ……………………………………………………………………IV
ABSTRACT ……………………………………………………………….. V
目錄 …………………………………………………………………….. VI
圖目錄 ……………………………………………………………………. VII
表目錄……………………………………………………………………….VIII
第一章 單核細胞增多性李斯特菌背景介紹 ………………………………1
第二章 李斯特菌特性與分類 ………………………………………….6
第三章 李斯特菌之致病途徑、特性、與控制及預防 …………………12
第四章 檢驗方法 …………………………………………………………19
第五章 結論與展望 ……………………………………………………….. 45
參考文獻 ……………………………………………………………………48
附錄1 ………………………………………………………………………..67
附錄2 ………………………………………………………………………..71
附錄3 ………………………………………………………………………..76
參考文獻 References
Anonymous. 1998. Multistate outbreak of listeriosis –United States, 1998. MMWR Morb. Mortal. Wkly. Rep. 47:1085–1086.

Anonymous. 2000. Multistate outbreak of listeriosis –United States, 2000. MMWR Morb. Mortal. Wkly. Rep. 49:1129–1130.

Anonymous. 2001. Outbreak of listeriosis associated with homemade Mexican-style cheese –North Carolina, October 2000 – January 2001. MMWR Morb. Mortal. Wkly. Rep. 50:560–562.

Aureli, P., Fiorucci, G. C., Caroli, D., Marchiaro, G., Novara, O., Leone, L., and Salmaso, S. 2000. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 342:1236–1241.

Bailey, J. S. 1998. Detection of Salmonella cells within 24 to 26 hours in poultry samples with the polymerase chain reaction BAX system. J. Food Prot. 61:792-795.

Barrett, T., Feng, P., and Swaminathan, B. 1997. Amplification methods for metection of foodborne pathogens, pp. 171-181. In: Nucleic acid amplification techniques: application to disease diagnosis. Lee, H. H., Morse, S. A., and Olsvik, O. (ed). Eaton Publishing, Boston.

Bhagwat, A. A. 2003. Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 84:217- 224.

Bille, J. 1990. Epidemiology of human listeriosis in Europe, with special reference to the Swiss outbreak. In: Miller, A. J., Smith, J. L., and Somkuti, G. A. (eds.) Foodborne listeriosis. Elsevier, Amsterdam, pp. 71–74.

Blackman, I. C., and Frank, J. F. 1996. Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Prot. 8:827-31.

Blais, B., and Phillippe, L. 1993. A simple RNA probe system for analysis of Listeria monocytogenes polymerase chain reaction products. Appl. Env. Microbiol. 59:2795-2800.

Bohnert, M., Dilasser, F., Dalet, C., Mengaud, J., and Cossart, P. 1992. Use of specific oligonucleotides for direct enumeration of Listeria monocytogenes in food samples by colony hybridization and rapid detection by PCR. Res. Microbiol. 143:271-280.

Border, P., Howard, J., Plastow, G., and Siggens, K. 1990. Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction. Lett. Appl. Microbiol. 11:158-162.

Brehm, K., Kreft, J., Ripio, M. T., and Vquez-Boland, J. A. 1996. Regulation of virulence gene expression in pathogenic Listeria. Microbiologia 12:219-236.

Brooks, J., Back, J., and Kroll, R. 1992. Direct application to dairy foods of a Listeria-Specific oligonucleotide probe to 16S rRNA. Int. J. Food Microbiol. 16:303-312.

Bsat, N., and Batt, C. 1993. A combined modified reverse dot-blot assay for the specific non-radioactive detection of Listeria monocytogenes. Molec. Cellular Probes 7:199-207.

Bubert, A., Kohler, S., and Goebel, W. 1992. The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl. Envioron. Microbiol. 58:2625-2632.

Candrian, U., Hofelein, C., and Luthy, J. 1992. Polymerase chain reaction with additinal primers allows identification of amplified DNA and recognition of specifid alleles. Molec. Cellular Probes 6:13-19.

Chen, J., and Griffiths, M. W. 2001. Detection of Salmonella and simultaneous detection of Salmonella and Shiga-like toxin producing Escherichia coli using the magnetic capture hybridization polymerase chain reaction. Lett. Appl. Microbiol. 32:7-11.

Colburn, K. G., Kaysner, C. A., Abeyta, C., and Wekeel, M. 1990. Listeria species in a california coast estuarine environment. Appl. Environ. Microbiol. 56:2007-2011.

Conlan, J. W., and North, R. J.1992. Roles of Listeria monocytogenes virulence factors in survival: virulence factors distinct from listeriolysin are needed for the organism to survive an early neutrophil-mediated host defense mechanism. Infect. Immun. 60:951–957.

Cooray, K., Nishibori, T., Xiong, H., Matsuyama, T., Fujita, M., and Mitsuyama, M. 1994. Detection of multiple virulence-associated genes of Listeria monocytogenes by PCR in artificially contaminated milk samples. Appl. Env. Microbiol. 60:3023-3026.

Cossart, P., Vicente, M. F., Mengaud, J., Baquero, F., Perez-Diaz, J. C., and Berche, P. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57:3629–3636.

Cox, N. A., Fung, D. Y. C., Goldschmidt, M. C., and Bailey, J. S. 1984. Selecting a miniaturized system for Identification of Enterobacteriaceae. J. Food Prot. 47:74-77.

Cox, N. A., Fung, D. Y. C., Bailey, J. S., Hartman, P. A., and Vasavada, P. C. 1987. Miniaturized kits, immunoassays and DNA hybridization for recognition and identification of foodborne bacteria. Dairy Food Sanit. 7:628-631.

Cudjoe, K. S., Krona, R., and Olsen, E. 1994. IMS: a new selective enrichment technique for detection of Salmonella in foods. Int. J. Food Microbiol. 23:159-165.

Cunningham, A. J. 1998. Introduction to bioanalytical sensors. John Wiley and Sons. New York.

Dalton, C. B., Austin, C. C., Sobel, J., Hayes, P. S., Bibb, W. F., Graves, L. M., Swaminathan, B., Proctor, M. E., and Griffin, P. M. 1997. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336:100–105.

D'Aoust, J. Y., Sewell, A. M., and Greco, P. 1991. Commercial latex agglutination kits for the detection of foodborne Salmonella. J. Food Prot. 54:725-730.

Datta, A., Wentz, B., Shook, D., and Truckess, M. 1988. Synthetic oligodeoxyribonucleotide probes for detection of Listeria monocytogenes. Appl. Envrion. Microbiol. 54:2933-2937.

Datta, A. R., Wentz, B. A., and Russell, J. 1990. Cloning of the listeriolysin O gene and development of specific gene probes for Listeria monocytogenes. Appl. Environ. Microbiol. 56:3874-3877.

Deneer, H., and Boychuk, I. 1991. Species-specific detection of Listeria monocytogenes by DNA amplification. Appl. Env. Microbiol. 57:606-609.

de Valk, H., Vaillant, V., Jacquet, C., Rocourt, J., Le Querrec, F., Stainer, F., Quelquejeu, N., Pierre, O., Pierre, V., Desenclos, J. C., and Goulet, V. 2001. Two consecutive nationwide outbreaks of listeriosis in France, October 1999–February 2000. Am. J. Epidemiol. 154:944–950.

Dillon, R. M., and Patel, T. R. 1992. Listeria in seafood: A Review. J. Food Prot. 55:1009-1015.

Dziezak, J. D. 1987. Rapid methods for microbiological analysis of foods. Food Technol. 41:56-73.

Eggins, B. 1997. Biosensors, an Introduction. John Wiley and Sons. New York.

Ericsson, H., Eklöw, A., Danielsson-Tham, M. L., Loncarevic, S., Mentzing, L. O., Persson, I., Unnerstad, H., and Tham, W. 1997. An outbreak of listeriosis suspected to have been caused by rainbow trout. J. Clin. Microbiol. 35:2904–2907.

Feldsine, P. T., Forgey, R. L., Falbo-Nelson, M. T., and Brunelle, S. 1997. Escherichia coli O157:H7 visual immunoprecipitation assay: a comparative validation study. J. AOAC 80:43-48.

Feng, P. 1997. Impact of molecular biology on the detection of foodborne pathogens. Mol. Biotech. 7:267-278.

Feng, P., Lampel, K. A., and Hill, W. E. 1996. Developments in food technology: applications and economic and regulatory considerations, pp. 203-229. In: Nucleic acid analysis: principles and bioapplications. Dangler, C. A., and Osburn, B. (ed). Wiley & Sons, New York.

Fenlon, D. R. 1985. Wild birds and silage as reservoirs of Listeria in the agricultural environment. J. Appl. Bacteriol. 59:537–543.

Fitter, S., Heuzenroeder, M., and Thomas, C. 1992. A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J. Appl. Bacteriol. 73: 53-59.

Flamm, R. K., Himrichs, D. J., and Thomashow, M. F. 1989. Cloning of the gene encoding a major secreted polypeptide of Listeria monocytogenes and its potential use as a species specific probe. Appl. Environ. Microbiol. 55:2251-2256.

Fleming, D. W., Cochi, S. L., MacDonald, K. L., Brondum, J., Hayes, P. S., Plikaytis, B. D., Holmes, M. B., Audurier, A., Broome, C. V., and Reincold, A. L. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med. 312:404–407.

Fluit, A., Torensma, R., Visser, M., Aarsman, C., Poppelier, M., Keller, B., Klapwijk, P., and Verhoef, J. 1993. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl. Env. Microbiol. 59:1289-1293.

Fratamico, P., and Strobaugh, T. P., 1998. Simultaneous detection of Salmonella spp and Escherichia coli O157:H7 by multiplex PCR. J. Ind. Microbiol. Biotech. 21: 92–98.

Frye, D. M., Zweig, R., Sturgeon, J., Tormey, M., LeCavalier, M., Lee, I., Lawani, L., and Mascola, L. 2002. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin. Infect. Dis. 35:943–949.

Fung, D. Y. C. 2002. Rapid methods and automation in microbiology. Compr. Rev. Food Sci. Food Safety 1:3-22.

Fung, D. Y. C. 1991. Rapid methods and automation for food microbiology, pp. 1-38. In: Instrumental methods for quality assurance in foods. Fung, D. Y. C., and Matthews, R. F. (ed). Marcel Dekker, New York.

Fung, D. Y. C., Cox, N. A., Goldschmidt, M. C., and Bailey, J. S. 1989. Rapid methods and automation in microbiology: a survey of professional microbiologists. J. Food Prot. 52:65-68.

Fung, D. Y. C., Cox, N. A., and Bailey, J. S. 1988. Rapid methods and automation in the microbiological examination of food. Dairy Food Sanit. 8:292-296.

Furrer, B., Candrian, U., Hoefelein, C., and Luethy, J. 1991. Detection and identification of Listeria monocytogenes in cooked sausage products and milk by in vitro amplification of haemolysin gene fragments. J. Appl. Bacteriol. 70:372-379.

Gaillard, J. L., Berche, P., Frehel, C., Gouin, E., and Cossart, P. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141.

Goldschmidt, M. C. Biosensors. 1999. In: Encyclopedia of food microbiology, Academic Press, London, Vol. 1, pp. 268 279.

Goldschmidt, M. C., Fung, D. Y. C., Grant, R., White, J., and Brown, T. 1991. New aniline blue dyes medium for rapid identification and isolation of Candida albicans. J. Clin. Microbiol. 29:1095-1099.

Golsteyn-Thomas, E., King, R., Burchank, J., and Gannon, V. 1991. Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl. Env. Microbiol. 57:2576-2580.

Goulet, V., Rocourt, J., Rebiere, I., Jacquet, C., Moyse, C., Dehaumont, P., Salvat, G., and Veit, P. 1998. Listeriosis outbreak associated with the consumption of rillettes in France in 1993. J. Infect. Dis. 177:155–160.

Goulet, V., Jacquet, C., Vallant, V., Rebière, I., Mouret, E., Lorente, C., Maillot, E., Staïner, F., and Rocourt, J. 1995. Listeriosis from consumption of raw-milk cheese. Lancet 345:1501–1502.

Goulet, V., Lepoutre, A., Rocourt, J., Courtier, A. L., Dehaumont, P., and Veit, P. 1993. Epidémie de listériose en France – bilan final et resultants de l’enquênte épidémiogique. Bull. Epidémiol. Hebdom. 4:13–14.

Hartman, P. A., Swaminathan, B., Curiale, M. S., Firstenberg-Eden, R., Sharpe, A. N., Cox, N. A., Fung, D. Y. C., and Goldschmidt, M. C. 1992. Chapter 39, Rapid methods and automation, pp. 665-746. In: Compendium of methods for the microbiological examination of foods, 3rd ed., Vanderzant, C., and Splittstoesser, D. F. (ed). American Public Health Association, Washington, DC.

Hill, W. E. 1996. The polymerase chain reaction: application for the detection of foodborne pathogens. CRC Crit. Rev. Food Sci. Nutrit. 36:123-173.

Hitchins, A. D. 1998. Listeria monocytogenes. Ch. 10. In Food and Drug Administration Bacteriological Analytical Manual, 8th ed. (revision A), (CD-ROM version). Merker, R. L. (ed.). AOAC International, Gaithersburg, MD.

Jaton , K., Sahli , R., and Bille, J. 1992. Development of polymerase chain reaction assays for detection of Listeria monocytogenes in clinical cerebrospinal fluid samples. J. Clin. Microbiol. 30:1931-1936.

Jeníková, G., Pazlarová, J., and Demnerová, J. 2000. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int. Microbiol. 3:225-229.

Jensen, A., Frederiksen, W., and Gerner-Smidt, P. 1994. Risk factors for listeriosis in Denmark, 1989–1990. Scand. J. Infect. Dis. 26:171–178.

Johnson, W., Tyler, S., Ewan, E., Ashton, F., Wang, G., and Rozee, K. 1992. Detection of genes coding for listeriolysin and Listeria monocytogenes antigen A (LmaA) in Listeria spp. by the polymerase chain reaction. Microbial Pathogenesis 12:79-86.

Jones, E. M., and MacGowan, A. P. 1995. Antimicrobial chemotherapy of human infection due to Listeria monocytogenes. Eur. J. Clin. Microbiol. and Infec.Dis. 14:165–75.

Jones, D., and Seeliger, H. 1992. The genus Listeria. In The Prokaryotes, 2nd ed., Springer Verlag, Heidelberg, pp. 1595-1616.

Jones, D., and Seeliger, H. P. R. 1991. The Genus Listeria. In: The Procaryotes, Vol II, 2ed. Balows, A., Trüper, H.G., Dworkin, M. et al., (ed), Springer-Verlag, 1598-1616.

Kalamaki, M., Prioce, R. J., and Fung, D. Y. C. 1997. Rapid methods for identifying seafood microbial pathogens and toxins. J. Rapid Methods Automat. Microbiol. 5:87-137.

Kearney, T. E., Larkin, M. J., Frost, J. P., and Levett, P. N. 1993. Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste. J. Appl. Bacteriol. 75:215-219.

King, W., Raposa, S., Warshaw, J., Johnson, A., Halbert, D., and Klinger, J. D. 1989. A new colorimetric nucleic acid hybridization assay for Listeria in foods. Int. J. Food Microbiol. 8:226-232.

Klinger, J. D., and Johnson, A. R. 1988. A rapid nucleic acid hybridization assay for Listeria in foods. Food Technol. 42: 66-70.

Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P. 1992. Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531.

Kuhn, M., and Goebel, W. 1999. Pathogenesis of Listeria monocytogenes, p. 97–130. In Ryser, E. T., and Marth, E. H. (ed.), Listeria, Listeriosis, and Food Safety. Marcel Dekker, New York.

Lampel, K. A., Feng, P., and Hill, W. E. 1992. Gene probes used in food microbiology, pp. 151-188. In: Molecular approaches to improving food safety. Bhatnagar, D., and Cleveland, T. E. (ed.), Van Nostrand Reinhold, New York.

Lantz, P., Tjerneld, F., Borch, E., Hahn-Hagerdal, B., and Radstrom, P. 1994. Enhanced sensitivity in PCR detection of Listeria monocytogenes in soft cheese through use of an aqueous two-phase system as a sample preparation method. Appl. Env. Microbiol. 60:3416-3418.

Linnan, M. J., Mascola, L., Lou, X. D., Goulet, V., May, S., Salminen, C., Hird, D. W., Yonekura, M. L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B. D., Fannin, S. L., Kleks, A., and Broome, C. V. 1988. Epidemic listeriosis associated with Mexican style cheese. N. Engl. J. Med. 319:823–828.

Low, J. C., and Donache, W. 1997.A review of Listeria monocytogenes and listeriosis. The Vetr. J. 153:9-29.

Marquis, H., Goldfine, H., and Portnoy, D. A. 1997. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J. Cell Biol. 137:1381–1392.

Marquis, H., Doshi, V., and Portnoy, D. A. 1995. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63:4531–4534.

McLauchlin, J., Hall, S. M., Velani, S. K., and Gilbert, R. J. 1991. Human listeriosis and pate: a possible association. Br. Med. J. 303:773–775.

Miettinen, M. K., Siitonen, A., Heiskanen, P., Haajanen, H., Björkroth, K. J., and Korkeala, H. J. 1999. Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J. Clin. Microbiol. 37:2358–2360.

Moberg, L. J., Wagner, M. K., and Kellen, L. A. 1988. Fluorogenic assay for rapid detection of Escherichia coli in chilled and frozen foods: collaborative study. J. Assoc. Off. Anal. Chem. 71:589-602.

Moors, M. A., Levitt, B., Youngman, P., and Portnoy, D. A. 1999. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect. Immun. 67:131–139.

Murray, E. G. D., Webb R. A., and Swann M. B. R. 1926. A disease of rabbits characterized by large mononuclear leucocytosis caused by ahitherto undescribed bacillus Bacterium monocytogenes. J. Path. Bact. 29:407-439.

Nair, S., Milohanic, E., and Berche, P. 2000. ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect. Immun. 68:7061–7068.

Pinner, R. W., Schuchat, A., Swaminathan, B., Hayes, P. S., Deaver, K. A., Weaver, R. E., Plikaytis, B. D., Reeves, M., Broom, C. V., Wenger, J. D., and the Listeria Study Group. 1992. Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. J. Am. Med. Assoc. 267:2046-2050.

Ramsay, G. 1998. DNA chips: State-of-the art. Nat. Biotechnol. 16:40-44.
Stager, C. E., and Davis, J. R. 1992. Automated systems for identification of microorganisms. Clin. Microbiol. Rev. 5:302-327.

Riedo, F. X., Pinner, R. W., Tosca, M. L., Cartter, M. L., Graves, L. M., Reeves, M. W., Weaver, R. E., Plikaytis, B. D., and Broome, C. V. 1994. A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. J. Infect. Dis. 170:693–696.

Rocourt, J., and Bille, J. 1997. Foodborne listerosis. Wld. Hlth. Statist. Quart. 50:67-73.

Rossen, L., Norskov, P., Holmstrom, K., and Rasmussen, O. F. 1992. Inhibition of PCR by components of food samples, and DNA-extraction solutions. Int. J. Food Microbiol. 17:37-45.

Rouquette, C., de Chastellier, C., Nair, S., and Berche, P. 1998. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol. Microbiol. 27:1235–1245.

Ryser, E. T., and Marth, E. H. (ed.). 1991. Listeria, Listeriosis, and Food Safety. Marcel Dekker, New York.

Sado, P. N., Jinneman, K. C., Husbt, G. J., Sorg, S. M., Miecinski, C. J. 1998. Identification of Listeria monocytogenes from unpasteurised apple juice using rapid test kits. J. Food Prot. 61:1199-1202.

Safarik, I., Safarikova, M., and Forsythe, S. J. 1995. The application of magnetic separations in applied microbiology. J. Appl. Bacteriol. 78:575-585.

Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Hor, G. T., Erlich, H. A., and Arnheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354.

Sanaa, M., Poutrel, B., Menard, J. L., and Serieys, F. 1993. Risk factors associated with contamination of raw milk by Listeria monocytogenes in dairy farms. J. Dairy Sci. 76: 2891-2898.

Schlech, W. F., Lavigne, P. M., Bortolussi, A. C., Allen, A. C., Haldane, E. V., Wort, A. J., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S., and Broome, C. V. 1983. Epidemic listeriosis: Evidence for transmission by food. N. J. Engl. Med. 308:203–206.

Schluter D., Domann, E., Hain, C. T., Hof, H., Chakraborty, T., and Deckert-Schluter, M. 1998. Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect. Immun. 66:5930–5938.

Schuchat, A., Swaminathan, B., and Broome, C. V. 1991 Epidemilogy of human listerosis. Clin. Microbiol. Rev. 2:169-183.

Sim, J., Hood, D., Finnie, L., Wilson, M., Graham, C., Brett, M., and Hudson, J. A. 2002. Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett. Appl. Microbiol. 35:409–413.

Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A., and Goldfine, H. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63:4231–4237.

Stager, C. E., and Davis, J. R. 1992. Automated systems for identification of microorganisms. Clin. Microbiol. Rev. 5:302-327.

Swaminathan, B., and Feng, P. 1994. Rapid detection of foodborne pathogenic bacteria. Ann. Rev. microbial. 48:401-426.

Tappero, J. W., Schuchat, A., Deaver, K. A., Mascola, L., and Wenger, J. D. 1995. Reduction in the incidence of human listeriosis in the United States. effectiveness of prevention efforts? J. Am. Med. Assoc. 273:1118-1122.

Uyttendaele, M., Van Hoorde, I., and Debevere, J. 2000. The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54:205-212.

Vines, A., Reeves, M., Hunter, S., and Swaminathan, B. 1992. Restriction fragment length polymorphism in four virulence-associated genes of Listeria monocytogenes. Res. Microbiol. 143:281-294.

Wang, R., Cao, W., Wang, H., and Johnson, M. 1993. A 16S rRNA-based DNA probe and PCR method specific for Liseria ivanovii. FEMS Microbiol. Lett. 106:85-92.

Wang, R., Cao, W., and Johnson, M. 1991. Development of a 16S rRNA-based oligomer probe specific for Listeria monocytogenes. Appl. Env. Microbiol. 57:3666-3670.

Watson, C., and Ott, K. 1990. Listeria outbreak in western Australia. Commun. Dis. Intell. 24:9–12.

Weagant, S. D., Jagow, J. A., Jinneman, K. C., Omiecinski, C. J., Kaysner, C. A., and Hill, W. E. 1999. Development of digoxigeninlabeled PCR amplicon probes for use in detection and identification of enteropathogenic Yersinia and Shiga toxin-producing Escherichia coli from foods. J. Food Prot. 62:438- 443.

Weis, J., and Seeliger, H. P. R. 1975. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 30:29-32.

Welshimer, H. J. 1960. Survival of Listeria monocytogenes in soil. J. Bacteriol. 80:316-320.

Wesley, I. V., and Ashton, F. 1991. Restriction enzyme analysis of Listeria monocytogenes strains associated with food-borne epidemics. Appl. Environ. Microbiol. 57:969–975.

Wright, D. J., Chapman, P. A., and Siddons, C. A. 1994. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect. 113:31-39.

Yazdankhah, S. P., Sølverød, L., Simonsen, S., and Olsen, E. 1999. Development and evaluation of an immunomagnetic separation-ELISA for the detection of Staphylococcus aureus thermostable nuclease in composite milk. Vet. Microbiol. 67:113-125.

Yoshida, T. K., Sato, M. Y., and Hirai, K. 1998. Sources and routes of contamination of raw milk with Listeria monocytogenes and its control. J. Vet. Med. Science. 60:1165-1168.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code