Responsive image
博碩士論文 etd-0803106-022942 詳細資訊
Title page for etd-0803106-022942
論文名稱
Title
免疫球蛋白A1蛋白
Role of IgA1 Protease β-chain in Bacterial Infection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-23
繳交日期
Date of Submission
2006-08-03
關鍵字
Keywords
α蛋白質、免疫球蛋白A1蛋白、β-鏈、細菌感染、細菌黏附作用分析、自體運輸蛋白質區域
IgA1 protease, bacterial infection, α-protein, autotransporter, adherence assay, surface domain
統計
Statistics
本論文已被瀏覽 5647 次,被下載 1224
The thesis/dissertation has been browsed 5647 times, has been downloaded 1224 times.
中文摘要
免疫球蛋白IgA1在免疫系統裡扮演著重要的角色,尤以在黏膜表面對抗外來病源體的侵略為主。但部分的致病菌,如:Haemophilus influenzae及Neisseria meningitides,能夠分泌IgA1蛋白酶來切割IgA1,使失去作用,甚至造成後續免疫反應失效的嚴重後果。IgA1原蛋白酶主要由四個不同的功能區域組成:signal peptide,IgA1蛋白酶,α蛋白質及自體運輸蛋白質區域。位於C端的自體運輸蛋白質區域,又可被分為linking region(在本研究中以surface domain稱之)及β-core。過去對於IgA1蛋白酶的研究,主要集中在蛋白酶切割IgA1的作用以及C端的自體運輸功能。對於α蛋白質及surface domain並無太多的著墨。本研究即以不具IgA1蛋白酶活性的大腸桿菌(UT5600)表達重組蛋白α蛋白質及surface domain,利用人體肺部癌細胞A549進行細菌黏附作用分析,以四種不同的菌株(具有及缺少IgA1蛋白酶活性)來探討這兩個部份是否會對於細菌的黏附有所影響,進而去推測其在細菌感染上扮演的可能角色。由本研究中的結果顯示,α蛋白質及surface domain確實在對於細菌的貼附作用有著一定的作用,並且此作用會隨著菌株的不同,而具有不同的影響。
Abstract
Some pathogenic bacteria including Haemophilus influenzae and Neisseria
meningitides produce a protease called IgA1 protease to impair a major antibody,
immunoglobulin A1 (IgA1), on human mucosal surfaces. The iga mRNA is
initially translated into a precursor containing four distinct domains: a 31-amino
acids signal peptide which leads the precursor to the periplasmic space, an
105-kDa protease domain which cleaves host IgA1 molecule, a β-domain
responsible for autotransportation of the protease domain, and a short linker
between the protease and the β-domains. The autotransporter β-domain can be
further divided into three subdomains in Neisseria protease: an extracellular
linking region α-protein and a membrane-embedded β-core, between which there
is a distinguished sequence called surface region. The hydrolytic function of the
protease and the transporter role of β-core had been studied extensively, but the
α-protein and the surface regions were less defined, or had their role
characterized. Thus this study is designed to reveal the possible pathogenic
functions of the α-protein and the surface region in bacterial adherence to human
cell surfaces. To complete this project, recombinant α-protein and the surface
region were expressed in IgA1 protease-negative E. coli strain (UT5600)
respectively and purified to homogeneity. These recombinant proteins were used
in cellular assays for bacterial adhesion on human lung cancer cell (A549). Four
different invasive strains of pathogenic bacteria (IgA1 protease-positive or
negative), were recruited in adherence assays to determine the effect of the
purified α-protein and the surface region on bacterial adherence to A549 cells.
Results showed that the both α-protein and the surface region played a role in
bacterial adherence in a species-dependent manner.
目次 Table of Contents
English abstract…………………………………………………1
Chinese abstract………………………………………………...2
Chapter 1: Introduction……..……………………………...…...3
Chapter 2: Material and methods……...……………………......6
Chapter 3: Results…………………………………...…...........13
Chapter 4: Discussion………………………………...….........40
References……………………………………………...….......43
Appendix……..………………………………………...….......46
參考文獻 References
1. Avadhanula, V., Rodriguez, C. A., DeVincenzo, J. P., Wang, Y., Webby, R. J., Ulett, G. C., and Adderson, E. E. (2006). Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J. Virol. 80, 1629-1636.
2. Avadhanula, V., Rodriguez, C. A., Ulett, G. C., Bakaletz, L. O., and Adderson E. E. (2006). Nontypeable Haemophilus influenzae adheres to intercellular adhesion molecule 1 (ICAM-1) on respiratory epithelial cells and Upregulates ICAM-1 expression. Infect Immunity. 74, 830-838.
3. Dinulos, J. G. H., Mentele, L., Fredericks, L. P., Dale, B. A.,1 and Darmstadt, G. L. (2003). Keratinocyte expression of human β defensin 2 following bacterial infection: role in cutaneous host defense. Clin. Diagn. Lab. Immunol. 10, 161-166.
4. Halter, R., Pohlner, J., and Meyer, T. F. (1984). IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO J. 3, 1595-1601.
5. Halter, R., Pohlner, J., and Meyer, T. F. (1989). Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo. EMBO J. 8, 2737-2744.
6. Henderson, I. R., Navarro-Garcia, F., and Nataro, J. P. (1998). The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370-378.
7. Henderson, I. R. and Nataro, J. P. (2001). Virulence functions of autotransporter proteins. Infect Immunity. 69, 1231-1243.
8. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C., and Ala’Aldeen, D. (2004). Type V Protein Secretion Pathway: the Autotransporter Story. Microbiol. Mol. Biol. Rev. 68, 692-744.
9. Jose, J., Jähnig, F., and Meyer, T. F. (1995). Common structural features of IgA1 protease-like outer membrane protein autotransporters. Mol. Microbiol. 18, 378-380.
10. Klauser, T., Pohlner, J., and Meyer, T. F. (1990). Extracellular transport of cholera toxin B subunit using Neisseria IgA protease β-domain: conformation-dependent outer membrane translocation. EMBO J. 9, 1991-1999.
11. Klauser, T., Pohlner, J., and Meyer, T. F. (1992). Selective extracellular release of cholera toxin B subunit by Escherichia coli: dissection of Neisseria Igaβ-mediated outer membrane transport. EMBO J. 11, 2327-2335.
12. Klauser, T., Krämer, J., Otzelberger, K., Pohlner, J., and Meyer, T. F. (1993). Characterization of the Neisseria Igaβ-core. The essential unit for outer membrane targeting and extracellular protein secretion. J. Mol. Biol. 234, 579-593.
13. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M., and Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317-325.
14. Lomholt, H., Poulsen, K., and Kilian, M. (1995). Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitides, Neisseria gonorrhoeae and Haemophilus influenzae. Mol. Microbiol. 15, 495-506.
15. Oomen, C.J., Van Ulsen, P., Van Gelder, P., Feijen, M., Tommassen, J., and Gros, P. (2004). Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257-1266.
16. Parsons, H. K., Vitovski, S., and Syers, J. R. (2004). Immunoglobulin A1 proteases: a structure-function update. Biochem. Soc. Trans. 32, 1130-1132.
17. Pohlner, J., Halter, R., Beyreuther, K., Meyer, T. F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoese IgA protease. Nature. 325, 458-462.
18. Pohlner, J., Langenberg, U., Wölk, U., Beck, S. C. and Meyer, T.F. (1995). Uptake and nuclear transport of Neisseria IgA1 protease-associated α-proteins in human cells. Mol. Microbiol. 17, 1073-1083.
19. Stathopoulos, C., Hendrixson, D. R., Thanassi, D. G., Hultgren, S.J., St Geme, J. W. 3rd, and Curtiss, R. 3rd. (2000). Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect. 2, 1061-1072.
20. St Geme, III, J. W. (2002). Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell. Microbiol. 4, 191–200.
21. Thanassi, D. G. and Hultgren, S. J. (2000). Multiple pathways allow protein secretion across the bacterial outer membrane. Curr. Opin. Cell. Biol. 12, 420-430.
22. Turner, D. P. J., Wooldridge, K. G., and Ala’Aldeen, D. A. A. (2002). Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein. Infect Immunity. 70, 4447-4461.
23. Vidarsson, G., Overbeeke, N., Stemerding, A. M., van den Dobbelsteen, G., van Ulsen, P., van der Ley, P., Kilian, M., and van de Winkel, J. G. J. (2005). Working mechanism of immunoglobulin A1 (IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 protease. Infect Immunity. 73, 6721-6726.
24. Vitovski, S., Read, R. C., and Sayers, J. R. (1999). Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13, 331-337.
25. Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J., and Janoff E. N. (2003). Antibody-enhanced pneumococcal adherence requires IgA1 protease. PNAS. 100, 4215-4220.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code