Responsive image
博碩士論文 etd-0803109-142120 詳細資訊
Title page for etd-0803109-142120
論文名稱
Title
新型選擇性液體灌注光子晶體光纖技術及其光學測量
A Novel Selective Filling Technique of Photonic Crystal Fibers and Their Optical Measurements
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-08-03
關鍵字
Keywords
光子晶體光纖、選擇性灌注技術
photonic crystal fibers, selective filling technique
統計
Statistics
本論文已被瀏覽 5626 次,被下載 0
The thesis/dissertation has been browsed 5626 times, has been downloaded 0 times.
中文摘要
本論文提出新型選擇性光子晶體光纖液體灌注技術,此技術係使用光學膠封孔程序,達成選擇性光子晶體光纖液體灌注的目的。本研究可分為環形選擇性灌注與線形選擇性灌注。在環形選擇性灌注方面,全四層、內三層之選擇性灌注,在波段 1100nm~1300nm 之光學膠的插入損失約為 7.5dB,其餘波段之膠的插入損失則約為 15dB 以上,有類似光子能隙的效應產生,若灌注液晶,則能應用在製作可調式濾波器方面上;而外三層、外二層、外一層之環形選擇性灌注,以光學膠的插入損失平均為 2dB 來看,仍是以全反射物理機制傳導,則能應用在製作低損耗可調式長週期光纖光柵方面上。在線形選擇性灌注方面,中間一排之選擇性灌注,其遠場圖樣在雷射波長 1600nm 時,有較明顯的橢圓狀,具有雙折射的效應。
Abstract
A novel selective-filling technology of photonic crystal fibers (PCFs) employing a simple selective-blocking process using UV gel is demonstrated in this thesis. In this study the liquid-filled PCFs with the filling in inside three layers and whole four layers represent the insertion loss of gel 7.5dB and the photonic band gap (PBG) guiding effect at wavelength 1100nm~1300nm, having potential to be tunable optical filters by filling the liquid crystal. The liquid-filled PCFs without the filling of the most inside 1ayer represent low insertion loss of gel 2dB and the total index reflection (TIR) guiding effect, having potential to be low loss tunable fiber gratings by filling the liquid crystal. The liquid-filled PCFs with the filling in middle a layer represent the elliptical far field pattern and effect of birefringence at wavelength 1600nm.
目次 Table of Contents
內容目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
內容目錄 Ⅳ
圖表目錄 Ⅶ
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
1-3 論文架構 2
第二章 原理、應用及文獻回顧 3
2-1 光子晶體光纖之原理與應用 3
2-1-1 光子晶體光纖之傳導機制 3
2-1-2 光子晶體光纖的分類 5
2-1-3 光子晶體光纖的特殊性質 6
2-2. 文獻回顧 10
2-2-1 選擇性光子晶體光纖液體灌注技術之應用 10
2-2-2 選擇性光子晶體光纖液體灌注技術文獻回顧 11
第三章 新型選擇性灌注技術之介紹與製程 19
3-1 新型選擇性液體灌注技術之介紹 19
3-2 環形選擇性液體灌注技術製作流程 20
3-2-1 研製沾膠用的工具光纖 21
3-2-2 沾光學UV膠至工具光纖的端面 23
3-2-3 沾光學UV膠至光子晶體光纖端面 23
3-2-4 將光子晶體光纖端面的光學膠固化 24
3-2-5 將液體灌注於光子晶體光纖 24
3-3 線形選擇性液體灌注技術製作流程 25
3-3-1 研製沾膠用的工具光纖 25
3-3-2 沾光學UV膠至工具光纖的端面 26
3-3-3 沾光學UV膠至光子晶體光纖端面 27
3-3-4 將光子晶體光纖端面的光學膠固化 28
3-3-5 將液體灌注於光子晶體光纖 28
第四章 環形與線形選擇性灌注PCFs之光學測量 40
4-1 環形選擇性灌注光子晶體光纖之光學特性測 40
4-1-1 環形選擇性灌注光子晶體光纖之光學膠插入損失測量 40
4-1-2 環形選擇性灌注光子晶體光纖之遠場圖樣測量 41
4-2 線形選擇性灌注光子晶體光纖之光學特性測量 41
4-2-1 線形選擇性灌注光子晶體光纖之遠場圖樣測量 41
4-2-2 線形選擇性灌注光子晶體光纖之極化相依損失測量 42
第五章 結論及未來工作 50
5-1 環形選擇性灌注光子晶體光纖LMA-10 50
5-2 線形選擇性灌注光子晶體光纖LMA-10 50
5-3 未來工作 50
參考資料 51
圖表目錄
圖 2.1 光纖工作原理圖 13
圖 2.2 光纖傳輸圖 14
圖 2.3 光子晶體光纖的分類圖 15
圖 2.4 超連續光譜示意圖 16
圖 2.5 無截止單模成因解釋圖 16
圖 2.6 (a)未熔燒光子晶體光纖端面(b)熔燒過後之光子晶體光纖端面 17
圖 2.7 利用孔洞大小方式之選擇性液體灌注技術過程圖 17
圖 2.8 熔接中空圓柱之選擇性液體灌注技術過程圖 18
圖 3.1 光子晶體光纖LMA-10端面照 29
圖 3.2 環形選擇性灌注LMA-10示意圖(a)內一層(b)內二層(c) 內三層 29
圖 3.3 環形選擇性灌注LMA-10示意圖(a)外三層(b)外二層(c) 外一層 30
圖 3.4 線形選擇性灌注示意圖(a)中間一排(b)中間三排 30
圖 3.5 選擇性液體灌注光子體光纖流程圖 31
圖 3.6 光纖研磨機系統 32
圖 3.7 光纖夾具 32
圖 3.8 光纖升降平台 33
圖 3.9 研磨機控制面板 33
圖 3.10 環形選擇性封孔之沾膠工具光纖的側面照 34
圖 3.11 環形選擇性封孔之沾膠工具光纖的端面照 34
圖 3.12 環形選擇性封孔實驗架構圖 35
圖 3.13 環形選擇性封孔LMA-10端面照(a)內一層(b)內二層(c)內三層 35
圖 3.14 環形選擇性封孔LMA-10端面照(a)外三層(b)外二層(c)外一層 36
圖 3.15 線形選擇性封孔之沾膠工具光纖的側面照 36
圖 3.16 線形選擇性封孔之沾膠工具光纖的端面照 37
圖 3.17 可旋轉光纖夾具俯面圖 37
圖 3.18 線形選擇性封孔實驗架構圖 38
圖 3.19 線形選擇性上四排、下四排封孔LMA-10端面照 38
圖 3.20 線形選擇性上三排、下三排封孔LMA-10端面照 39
表 4.1 中間一排選擇性灌注折射液LMA-10之發散角量測結果表 42
表 4.2 中間一排選擇性折射液灌注LMA-10之PDL量測結果表 42
圖 4.1 量測選擇性灌注光子晶體光纖之光譜實驗架構圖 43
圖 4.2 全四層、內三層、內二層、內一層環形灌注之光學膠插入損失 43
圖 4.3 外三層、外二層、外一層環形選擇性灌注之光學膠插入損失 44
圖 4.4 選擇性灌注之光纖晶體光纖遠場量測實驗架構 44
圖 4.5 未灌注LMA-10之遠場圖樣 45
圖 4.6 環形全四層選擇性光學膠灌注LMA-10之遠場圖樣 46
圖 4.7 線形中間一排選擇性折射液灌注LMA-10之遠場圖樣 47
圖 4.8 線形中間三排選擇性折射液灌注LMA-10之遠場圖樣 48
圖 4.9 選擇性液體灌注LMA-10之極化相依損失量測實驗架構圖 49
參考文獻 References
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol.58, pp.2059, 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol.58, pp.2486, 1987.
[3] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol.21, pp.1547, 1996.
[4] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp.325–1327, 2000.
[5] T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588–590, 2001.
[6] P. St. J. Russell, “Photonic crystal fiber,” Science., vol.299, pp.358 ,2003.
[7] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett., vol.16 , pp.1347, 1998.
[8] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp.961,1997.
[9] A. Bjarklev, A. S. Bjarklev, and J. Broeng, “Photonic crystal fibres,” Kluwer Academic Publishers , 2003. ISBN:1-4020-7610-3.
[10] F. Gerome, J. -L. Auguste, and J. -M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber, ” Opt. Lett., vol. 29, pp. 2725, 2004.
[11] A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres,“Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express, vol.9, pp.687, 2001.
[12] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express, vol.11, pp. 843, 2003.
[13] F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science, vol.298, pp.399 ,2002.
[14] R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett., vol.26, pp.1376, 2001.
[15] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coher-ence tomography using continuum generation in a air-silica microstructure optical fiber,” Opt. Lett., vol.26, pp.608 , 2001.
[16] N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. vol.24, pp.1395–1397, 1999.
[17] S. Coen, A. H. Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell,“Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B, vol.19, pp.753–764 ,2002.
[18] T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol.13, pp.588–590, 2001.
[19] K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express, vol.9, pp.676–680 ,2001.
[20] K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express, vol.14, pp.6870–6878, 2006.
[21] T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express,vol. 11, pp.258–2596, 2003.
[22] F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.,vol.85, pp.2181–2183, 2004.
[23] D. Noordegraaf, L. Scolari, J. Lagsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express, vol.15, pp.7901–7912 ,2007.
[24] F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett., vol.85, pp.2181–2183, 2004.
[25] D. Noordegraaf, L. Scolari, J. Lagsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett.,vol. 33, pp.986–988, 2008.
[26] R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express, vol.14, pp.6800–6812, 2006.
[27] J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett., vol.29, pp.1974–1976, 2004.
[28] Limin Xiao, Wei Jin, et al., “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Optics express. vol.13, pp.9014-9022, 2005.
[29] Yanyi Huang, Yong Xu, and Amnon Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol.85, pp.5182-5184, 2004.
[30] Cicero Martelli, John Canning, et al., “Water-core Fresnel fiber,” Optics express., vol.13, pp.3890-3895, 2005.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.131.168
論文開放下載的時間是 校外不公開

Your IP address is 3.133.131.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code