Responsive image
博碩士論文 etd-0803109-172424 詳細資訊
Title page for etd-0803109-172424
論文名稱
Title
以自然衰減法及風險評估進行含氯有機物污染場址之風險管理
Application of Monitored Natural Attenuation and Risk Assessment at a Chlorinated-compound Contaminated Site for Risk anagement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-06
繳交日期
Date of Submission
2009-08-03
關鍵字
Keywords
風險評估、暴露評估、蒙地卡羅分析、敏感性分析、三氯乙烯
sensitivity analysis, Monte Carlo analysis, trichloroethylene, exposure assessment, risk assessment
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
長久以來,含氯有機溶劑為地下水中常見有機污染物,尤其是三氯乙烯之污染最普遍。本研究場址曾因含氯有機物之洩漏及不當使用而造成地下水體之污染,經水質檢驗分析結果得知場址地下水中含有較高濃度之含氯有機物,如三氯乙烯(trichloroethylene, TCE)及1,1-二氯乙烯(1,1-Dichloroethylene,1,1-DCE),其檢出濃度高於第二類監測基準(0.05及0.07 mg/L),且污染團有隨地下水往下游移動之趨勢。
有鑑於此,本研究運用美國試驗及材料協會所發展之「風險基準矯正行動」準則、行政院環境保護署所建置之「土壤及地下水污染場址健康風險評估評析方法」、@RISK及BIOCHLOR等程式軟體,進行該受含氯有機物污染場址之健康風險評估,探討各環境介質、關切化學物質與暴露人體途徑等之健康風險並將之量化。
研究方法首先以BOIOCHLOR模式進行自然衰減率之模擬,並分析輸入參數對模式本身的敏感性;繼而利用透水係數與濃度之關係導出自然衰減率,並代入風險基準矯正行動評估準則(Risk Based Corrective Action, RBCA)之數學模式中,計算整治標準和風險度評估,並應用以巨集方式寫於EXCEL試算表之@RISK商用軟體,進行蒙地卡羅分析95%累計風險機率分佈情形。
經自然衰減評析表確認,本含氯有機物污染場址有充分證據顯示,有機物能於厭氧環境下生物降解,在加入自然衰減率並經蒙地卡羅法分析結果得知,三氯乙烯暴露途徑為攝食時,在累計機率為95%時,其分布值為2.61×10-5;密閉空間蓄積吸入途徑在累計機率為95%時分布值為1.461×10-5;大氣擴散吸入途徑累計機率為95%時分布值為2.17×10-6,以上統計分析結果均較我國環保署訂定之百萬分之一(10-6)為高,對人體健康存在致癌危險之威脅。在非致癌風險分析結果方面,1,1-二氯乙烯攝食暴露途徑之非致癌風險累計機率為95%時分布為0.53小於環保署訂定之危害指數為1(<1)的規定,不會對人體健康造成威脅;密閉空間蓄積吸入途徑在累計機率95%時分布為0.09;擴散於大氣中之吸入途徑累計機率為95%時分布值為0.012低於危害指數1的規定,因此在吸入之途徑對人體健康均不會造成。
地下水中三氯乙烯之場址特定目標濃度(site specific target level, SSTL) 以暴露途徑為吸入密閉空間蓄積之蒸汽的風險最高,此途徑SSTL整治目標值為6.91×10-2 mg/L較地下水管制標準0.05 mg/L來得寬鬆;而1,1-二氯乙烯也是吸入密閉空間蓄積之蒸汽的風險最高,其SSTL整治目標值為1.07×101 mg/L。相關性分析方面,關切污染濃度、透水係數與健康風險度呈正向線性關係,即表示關切污染濃度越高或透水係數越高,地下水攝食途徑之致癌風險就越大。
綜上所述,本研究場址健康風險評估結果,以傳輸介質為地下水時風險最大;暴露途徑則以地下水經汽化蒸散蓄積至室內並為人體吸收之途徑及地下水攝食兩途徑之風險最高。
由此可知,健康風險評估不但可提供人類健康適當的保護;評估污染場址健康風險的高低、釐清整治之必要性與急迫程度;也提供整治場址有用的資訊與提升整治成效、節省調查及整治的時間;建立土壤及地下水之整治目標及提供作為風險管理的重要決策依據。
Abstract
Contamination by dense non aqueous phase liquids (DNAPLs) [e.g., trichloroethylene (TCE)] in soil and groundwater has become an issue of great concern in many industrialized counties. In this study, a chlorinated-compound spill site was selected as the case study site to evaluate the possible risk to site workers and local residents caused by the contaminated soil and groundwater. The contaminants of concern at this site were TCE and 1,1-Dichloroethylene (1,1-DCE). The detected concentrations for TCE and 1,1-DCE exceeded the control standards of 0.05 and 0.07 mg/L, respectively.
In this study, the Risk-based Corrective Action (RBCA) protocol developed by American Society for Testing and Materials (ASTM), health and risk assessment methods for soil and groundwater contaminated sites developed by Taiwan Environmental Protection Administration were applied for risk calculation and quantification. Monte Carlo analysis using @RISK software was applied for uncertainty analysis to calculate the cumulative risk at 95% probability distribution. Moreover, a natural attenuation model (BIOCHLOR) was used to evaluate the effectiveness of natural attenuation mechanisms on the chlorinated compounds.
Results from this study show that the occurrence of natural attenuation for the chlorinated compounds was confirmed through the anaerobic biodegradation processes. The calculated cumulative risk at 95% cumulative probability via ingestion route was 2.61×10-5 through the Monte Carlo analysis. The calculated cumulative risk at 95% cumulative probability via inhalation route and ambient (outdoor) vapor inhalation diffusion channels were 1.461×10-5 and 2.17×10-6, respectively. Because the calculated risk levels were higher than the target cancer risk is 1×10-6 described in Taiwan’s “Soil and Groundwater Remediation Act”, appropriate remedial actions are required to lower the risk to below the target level. Results also show that the calculated hazard index (HI) values of the contaminated site are lower than the acceptable level (HI < 1) described in the “Soil and Groundwater Remediation Act.”
To meet the target level of cancer risk of 1×10-6, TCE contaminated groundwater needs to be remediated to below the site specific target level (SSTL) for inhalation exposure routes in a confined space volume, which is 6.91 × 10-2 mg/L. Based on the results of risk assessment, it is very important for the decision makers to incorporate remedial activities including institutional controls, engineering controls, and remediation programs from RBCA results. This study provides a streamlined process and guidelines of developing the risk-based decision-making strategy for contaminated sites in Taiwan.
目次 Table of Contents
謝 誌 I
中文摘要 II
Abstract IV
目 錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目的 1-1
1.3 研究內容 1-2
第二章 文獻回顧 2-1
2.1 含氯有機物之相關特性 2-1
2.1.1 含氯有機物污染來源 2-1
2.1.2 對人體及環境之影響 2-3
2.1.3 DNAPL傳輸概念 2-5
2.1.4 含氯有機物主要衰減反應途徑 2-9
2.2 健康風險評估 2-10
2.2.1 健康風險評估之重要性 2-10
2.2.2 健康風險評估的定義與目的 2-10
2.2.3 國內法源依據 2-11
2.2.4 國內外風險評估之差異 2-12
2.2.5 健康風險評估模式的架構 2-13
2.2.6 概念模式建立 2-22
2.2.7 層次性健康風險評估 2-23
2.2.8 第一層次健康風險評估 2-28
2.2.9 第二層次健康風險評估 2-28
2.2.10 第三層次健康風險評估 2-29
2.3 不確定分析 2-30
2.3.1 不確定分析的起因與分類 2-31
2.3.2敏感度分析 2-34
2.3.3 蒙地卡羅方法 2-40
2.4 監測式自然衰減(monitored natural attenuation, MNA) 2-44
2.4.1 國外監測式自然衰減法相關法源 2-44
2.4.2 自然衰減法可行性評估 2-46
2.4.3 自然衰減優缺點及使用限制 2-47
第三章 評估模式介紹 3-1
3.1 RBCA健康風險評估模式 3-1
3.1.1 RBCA 模式原理 3-2
3.1.2 RBCA 模式之輸入參數 3-3
3.2 BIOCHLOR模式 3-5
3.2.1 BIOCHLOR模式使用限制 3-5
3.2.2 BIOCHLOR 模式原理 3-6
3.2.3 BIOCHLOR模式之輸入參數 3-7
3.2.4 參數與污染濃度衰減之敏感性分析結果與討論 3-10
3.2.5 自然衰減率的估算 3-14
第四章 場址背景介紹 4-1
4.1 背景資料 4-1
4.1.1 地下水位及流向 4-1
4.1.2 地下水質 4-4
4.1.3 地質概述 4-6
4.1.4 氣象概述 4-7
4.2關切污染物質 4-9
4.2.1 關切污染物質的判定 4-9
4.2.2 關切污染範圍劃定 4-9
4.2.3 關切污染物濃度彙整 4-12
4.2.4 評估基準 4-12
4.3 暴露評估 4-13
4.3.1場址特定水文地質資料 4-13
4.3.2 場址土地利用情形 4-14
4.3.3 場址概念模式與暴露途徑分析 4-14
第五章 研究方法 5-1
5.1敏感性分析方法 5-2
5.2 蒙地卡羅模擬技術分析原理 5-3
5.2.1 蒙地卡羅模擬技術分析方法 5-3
5.3 層次性健康風險評估 5-4
第六章 健康風險評估結果 6-1
6.1風險值推估 6-1
6.2 整治目標值推估 6-11
6.3 風險管理策略研擬 6-12
第七章 結論與建議 7-1
7.1 結論 7-1
7.2 建議 7-2
參考文獻 參-1
符號說明 符-1
附錄一 案例參數與出處 附錄1-1
附錄二 健康風險評估數學模式推導 附錄2-1
附錄三 風險基準篩選水準計算公式 附錄3-1
附錄四 參數變動定距自然衰減濃度變化情形 附錄4-1
附錄五 RBCA 1.3健康風險評估結果 附錄5-1
參考文獻 References
ASTM, 2000, Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sutes, E2081.
ASTM, 2004, Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Site, E1943-98.
ATSDR., 1997, Toxicological Profile for Trichloroethylene. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry
ATSDR., 2007, Trichloroethylene(TCE) Toxicity.U.S. Department of Health and human services, Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine
Avagliano, S., A. vecchio, and V. Belgiorno., 2005. Sensitive parameters in predicting exposyre contaminants concentration in a risk assessment process, Environmental Monitoring And Assessment, 111 (1-3), pp. 133-148.
Bedient, P.B., H.S. Rifal, and C.J. Newell., 1999. Ground Water Contamination: transport and remediation. 2nd Edition. Prentice-Hall.
Benjamin, J. R., Cornell C.A., 1970. Probability:Statistics and decision for civil engineers, New York:Mograw-Hill, pp. 70-92
Chang, S.H., Kuo,C.H. Wang,J.W. Wang,K.S., 2004. Comparision of RBCA and CalTOX for setting risk-based cleanup levels based on inhalation exposure, Chemosphere, 56, pp. 359-367.
Clement , T. P., Truex, M. J., Lee, P., 2002. A case study for demonstrating the application of U.S. EPA’s monitored natural attenuation screening protocol at a hazardous waste site, Journal of Contaminant Hydrology 59, 133– 162
Cullen, A. C., 1995. The sensitivity of probability risk assessment results to alternative model structures: A case study of municipal waste incineration. Journal of the Air and Waste Management Association, 45, pp. 358-546.
Cullen, A.C.; Frey, H.C., 1999. Probabilistic techniques in exposure assessment. Plenum Press, New York and London.
Dubus, I.G., Brown, C.D., and Beulke, S., 2003., Sources of uncertainty in pesticide fate modelling. The Science of the Total Environment, 317, pp. 53-72.
Fetter, C.W., 1988. Contaminant Hydrogeology, Macmillan, New York.
Frey, H.C., and Patil, R. 2002. Identification and review of sensitivity analysis methods risk analysis, 22, pp. 553-577.
Foxall.K., 2008. Trichloroethylene Toxicological overview. Health Protection Agency, CHAPD HQ, HPA Version 1. pp. 1-11
Gist GL, Burg JR.,1995. Trichloroethylene--a review of the literature from a health effects perspective. Toxicol Ind Health, 11(3), pp. 253-307.
Groundwater Services, INC.1998, Risk-Based Corrective Action, GSI-RBCA.
Hatheway, A. W., Kanaori, Y., Cheema. T., Griffiths, J., and Promma, K., Encompassing Hydrogeology, 2005. Environmental Geology and the Applied Geoscuences, Engineering Geology, 81, pp. 99-130.
Hammonds, J.S., Hoffman, F.O., Bartell, S.M., 1994. An Introductory Guide to Uncertainty Analysis in Environmental and Health Risk Analysis, Oak Ridge National Laboratory, Tennnessee, USA.
Hermann Ru‥gner, Michael Finkel, Arno Kaschl, Martin Bittens, 2006. Application of Monitored Natural Attenuation in Contaminated Land Management—A Review and Recommended Approach for Europe, Environmental Science & Policy, 9, pp. 568-576.
Kao, C.M., S.C. Chen, and M.C. Su., 2001. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere 44, pp. 925-934.
Kao, C.M., Y.L. Chen, S.C. Chen, T.Y. Yeh, and W.S. Wu., 2003. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res. 37, pp. 4885-4894.
Kentel, E., Aral, M.M., 2005. 2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment. Regulatory Toxicology And Pharmacology Assessment, 19, 1.
Khan, F.I., Husain, T., 2001. Risk-based monitored natural attenuation-a case study, Journal of Hazardous Materials, B85, pp. 243-272.
Khan, F.I., Husain,T., 2003. Evaluation of a petroleum hydrocarbon contaminated site for natural attenuation using ’RBMNA’ methodology, Environmental Modelling and Software 18, pp. 179-194.
Lucius, J.E., Olhoeft, G.R., Hill, P.L., and Duke, S.K., 1992. Properties and hazards of 108 selected substances - 1992 edition: U.S. Geological Survey Open-File Report, 92-527, pp. 554.
Mckone, T.E., 1994. Uncertainty and variability in human exposures to soil
Contaminants through home-grown food-A Monte-Carlo assessment. Risk Analysis, 14, pp. 449-463.
Mckone, T. E., Bogen, K.T., 1992. Uncertainty in health-risk assessment: an ntegrated vase study based on tetrachloroethylene in California groundwater. Regulatory Toxicology and Pharmacology, 15, pp. 86-103.
Maddalena, R. L., Mckone, T. E, Hsieh, D.P.H.; Geng, S., 2001. Influential input classification in probabilistic multimedia models, Stochastic Environmental Resesrch and Risk Asse ssment, 15, pp. 1-17.
National Research Council (NRC)., 1983. Rick Assessment in the Federal Government: Manageing the Process. National Academy Press. Washington, D.C.
North Carolina, 2000, Division of Waste Management, Hazardous Waste Section, Guidance on Developing a Monitored National Attenuation Remedial Proposal for Chlorinated Organics in Ground Waster.
Pollock, D., Salama, R., Kookana, R., 2002. A study of atrazine transport through a soilprofile on the Gnangara Mound, Western Australia, using LEACHP and Monte Carlo techniques. Australian Journal of Soil Research, 40, 455-464.
Smith, A.E.;Ryan, P.R.; Evans, J.S., 1992. The effect of neglecting correlation when propagating uncertainty and estimating the population distribution of risk. Risk Analysis, 12, pp. 467-474.
Taylor, A.C., 1993. Using objective and subjective information to develop distributions for probabilistic exposure assessment, Journal of Exposure Analysis and Environmental Epidemiology, 3, pp. 285-298.
U. S AFCEE, 1998, Technical Protocal for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater.
U.S. EPA, 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual, 1, A, Office of Emergency and Remedial Response, Washington, DC.
U.S. EPA, 1992. Guidelines for Exposure Assessment. Office of Research and Development, Office of Health and Environmental Assessment, Washington, DC.
U.S. EPA, 1997. Exposure Factors Handbook. Office of Research and Development National Center for Environmental Assessment , Washington, DC.
U.S. EPA, 1998. Technical Protocol for Evaluating Natural Attenuation of hlorinated Solvents in Ground Water, Office of Research and Development Washington DC 20460, EPA 600-R-98-128
U.S. EPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, OSWER Directive 9200, 14-17, pp. 9-10.
U.S. EPA, 2000. Enrineered approaches to in situ bioremediation of chlorinated solnents:fundamentals and field applications, EPA-600-F-00-008.
U.S. EPA, 2004. How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers, EPA 510-R-04-002, IX-1 - IX-71.
Wahington Savannah River Company, 2007. Scenarios evaluation tool for chlorinated solvent MNA, WSRC-STI-2006-00096, 2.
Waterloo Centre for Ground Water Research, 1989. Dense Immiscible Phase Contaminants in Porous and Fractured Media, University of Waterloo Short Course, Kitchener, Onts.
Wisconsin department of natural resources, 2003. Understanding chlorinated hydrocarbon behavior in groundwater:investigation ,assessment and limitations of monitored natural attenuation.
Wartenberg. D, Reyner D., Scott CS., 2000, Trichloroethylene and cance pidemiologic evidence. Environ Health Perspect, 108 (2), pp. 161-76.
Zimmermann, H. J., 2000, An application-oriented view of modeling uncertainty. European Journal of Operational Research, 122(2), pp. 190-198.

中文參考文獻
王春和,唐麗英,2004, Excel 2003 統計分析。
許惠悰,2006,「風險評估與風險管理」,新文京開發出版股份有限公司
雷世恩,1999,「以生物處理法整治三氯乙烯及四氯乙烯污染之場址」,國立中山大學環境工程研究所碩士論文。
湯忠達,2000,「地下水污染之曝露與健康風險-以桃園RCA場址為例」,國立台灣大學環境工程研究所碩士論文。
張巧蓉,2001,「多目標規劃不確定分析之結合-以地下水整治案例」,國立台灣大學環境工程研究所碩士論文。
林進財,2001,「以建康風險評估訂定油污染場址之整治目標」,國立中山大學環境工程研究所碩士論文。
黃國威,2003,「地下水污染風險評估之不確定性分析與降低」,國立台灣大學環境工程研究所碩士論文。
張莉如,2004,「以自然衰減整治受石油碳氫化合物污染之地下水」,國立中山大學環境工程研究所碩士論文。
鄭凱駿, 2005,「致癌性重金屬土壤污染管制標準之適用性探討」,嘉南藥理科技大學環境工程學系。
王進崇,2005,「廢鉛蓄電池冶鍊場址環境污染風險評估之研究」,私立中國醫藥大學環境醫學研究所碩士論文
饒瑞萍,2006,「污染場址健康風險評估參數之敏感性分析」,國立中山大學環境工程究所碩士論文。
行政院環保署,2003,「全國廢棄工廠土壤及地下水污染潛勢調查計畫」,期末報告。
行政院環保署,2006,「土壤及地下水污染場址健康風險評估評析方法及撰寫指引」。
行政院環境保護署,2008,「土壤及地下水受比水重非水相液體污染場址之調查、驗證作業及整治工作等技術參考手冊建置計畫」。
行政院環保署,2008,「土壤及地下水污染場址健康風險評估評析技術諮詢計畫」
行政院環保署,2008,「應用監測試自然衰減法之可行性評估準則,設計及成效評估等規範建置計畫」
陳怡君,2004,「環保趨勢-歐盟執行污染場址風險評估概論」,工研院能源所
陳怡君,2006,「污染場址健康風險評估-多介質傳輸模模式選擇」,工業污染防治季刊,第98期,第47-62頁。
陳怡君,2008,「褐地再生健康風險評估適切性」工業污染防治季刊,第106期,第59-74 頁
吳偉智、陳大麟、黃文彥,2001,「健康風險評估模式之不確定性分析」,第四屆地下水資源及水資源保護研討會論文集,第 87-94 頁。
陳大麟,2000,「漏油污染之健康風險評估」,中國石油公司探採研究所。
董瑞安、梅若恩、賴彥融,2001,「受氯化碳氫化合物污染地下水階段式生物復育方法評估模式建立(II) 」國立清華大學原子科學系。
詹長權,2003,「健康風險評估指引」,國立台灣大學公共衛生學院職業衛生與工業衛生研究所。
李在平、陳鴻泉、林輝山、朱家毅、林耿億、賈儀平,2005,「自然衰減應用於石油碳氫化合物污染整治之探討」,台灣土壤及地下水環境保護協會,第18期,第 3-8 頁。
陳呈芳,2006,「自然衰減法於土壤及地下水污染整治之應用」,中興工程顧問股份有限公司,環保技術e報,第40期。
陳俊宏,2004,「建立生態風險評估模式之不確定性分析基本架構」,大葉大學環境工程研究所碩士論文 。
劉敏信、王奕森、韓國興、姚俊宇及莊煒志,2002,「特定場址自然衰減潛勢分析研究」,第一屆海峽兩岸土壤與地下水污染整治研討會,第227-234頁。
經濟部水利署水文水資源資料管理系統,2007,(http://gweb.wra.gov.tw/WRWEB/)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.219.78
論文開放下載的時間是 校外不公開

Your IP address is 3.135.219.78
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code