Responsive image
博碩士論文 etd-0803111-144817 詳細資訊
Title page for etd-0803111-144817
論文名稱
Title
以高錳酸鉀緩釋技術化學整治受三氯乙烯污染之地下水
In situ chemical oxidation of TCE-contaminated groundwater using slow permanganate-releasing material
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-07
繳交日期
Date of Submission
2011-08-03
關鍵字
Keywords
控制釋放技術、現地化學氧化、三氯乙烯、透水性反應牆
permeable reactive barrier, trichloroethylene, in situ chemical oxidation, controlled-release technology
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
本研究目的主要為模擬以控制釋放技術結合現地化學氧化(in situ chemical oxidation, ISCO)及透水性反應牆(permeable reactive barrier, PRB)來處理受三氯乙烯(trichloroethylene, TCE)污染之地下水的可行性。本研究所開發之緩釋高錳酸鉀物質,其中,經比例修改之增設組別-M2組[重量為40 g,其高分子材料-聚已內酯(poly(ε- caprolactone), PCL)、高錳酸鉀和澱粉的比例為2:1:0.5]的累積釋出量可達63.8% (w/w)且可持續釋出高錳酸鉀的累積天數達76天,且可維持足夠濃度之高錳酸根( )以氧化去除污染物。經由土壤氧化劑需求量(soild oxidation demand, SOD)試驗結果證明,低濃度組中之各反應器,其氧化劑之消耗速率將隨著高錳酸鉀濃度上升而增加;在高濃度組中的各個反應器於實驗初期的消耗情形也和低濃度組非常相似,但快反應的消耗速率並非隨著濃度增加而無限制的上升。TCE的去除效率(C/C0)會隨著莫耳濃度比的上升而增加,且以二階反應來模擬反應速率常數將比起擬一階動力模擬來的明顯可看出其TCE降解的反應變化。進一步將M2比例的緩釋高錳酸鉀物質進行管柱實驗去除TCE的結果得知,高錳酸鉀之釋放濃度可逐漸SOD並氧化去除TCE及其降解副產物,反應持續至95.6 孔隙容積(pore volume, PV),管柱2於此期間內的TCE平均去除效率為99%,而位於下游的管柱3至管柱5的處理效率亦可達95%以上。供試地下水流經8.8 PV後,二氧化錳(manganese dioxide, MnO2)的吸光值開始逐漸上升,並在15.2 PV時達到的最大值(0.193),但並無影響污染物去除的情形發生。供試地下水於實驗過程中,雖有偵測到微量濃度的六價鉻,皆均在地下水污染管制標準第一類之管制標準值內。若以掃描式電子顯微鏡(scanning electron microscope, SEM)與能量分散分析儀(energy-dispersive spectroscope, EDS)分析緩釋高錳酸鉀物質,可發現錳與鉀的重量百分比從14.66 wt.%和9.56 wt.%下降至4.67 wt.%和2.84 wt.%,顯示大部分的高錳酸鉀已釋放。綜合本研究結果顯示,利用緩釋高錳酸鉀物質結合ISCO及PRB的確可有效去除TCE,但需評估TCE之濃度及SOD來估算緩釋高錳酸鉀物質的添加量,方可達到去除污染物之最大效益。且緩釋高錳酸鉀物質釋出完畢後將緩慢的自然分解,並無廢棄物的產生,若加上ISCO及PRB自身的優點,此技術的確為一具經濟且對環境友善之綠色整治技術。
Abstract
The purpose of this study was to use controlled release technology combining with in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) releasing material was designed for potassium permanganate release in groundwater. The components of potassium permanganate releasing material included poly (ε-caprolactone) (PCL), potassium permanganate, and starch with a weight ratio of 2:1:0.5. Approximately 63.8% (w/w) of potassium permanganate was released from the material after 76 days of operation. The released was able to oxidize contaminant in groundwater. Results from the solid oxidation demand (SOD) experiment show that the consumption rate increased with increased contaminant concentration. TCE removal efficiency increased with the increased TCE concentration. The second-order rate law can be used to simulate the TCE degradation trend. In the column experiment, results show that the released MnO4- could oxidize TCE and TCE degradation byproducts when 95.6 pore volume (PV) of contaminated groundwater was treated. More than 95% of TCE removal can be observed in the column study. Although the concentration of manganese dioxide (MnO2) began to rise after 8.8 PV of operation, TCE removal was not affected. Results also show that low level of hexavalent chromium was detected (< 0.05 mg/L). Results from the scanning electron microscope (SEM) and energy-dispersive spectroscope (EDX) analyses show that the amounts of manganese and potassium in the materials decreased after the releasing experiment. Results indicate that the concentration of TCE and SOD need to be analyzed before the releasing materials are applied in situ. In the practical application, the releasing materials will not become solid wastes because they are decomposed after use. If this slow-releasing technology can be combined with a permeable reactive barrier system, this technology will become a more economic and environmentally-friendly green remedial system.
目次 Table of Contents
誌謝 i
摘要 iii
Abtract iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 含氯有機溶劑之相關特性 4
2.1.1 地下水含氯有機溶劑污染物之來源 4
2.1.2 TCE特性及對人體之危害 6
2.1.3 TCE之傳輸行為 12
2.2 地下水污染整治技術之種類 14
2.2.1 現地化學氧化法(in situ chemical oxidation, ISCO) 16
2.2.2 透水性反應牆(permeable reactive barrier, PRB) 18
2.3 高錳酸鉀特性介紹 21
2.3.1 高錳酸鉀的反應機制 23
2.3.2 高錳酸鉀於不同酸鹼環境下之反應 27
2.3.3 其他氧化試劑之應用特性 30
2.4 控制釋放技術 35
2.4.1 控制釋放模式 40
2.4.2 生物可分解性高分子材料 42
2.4.2.1 生物可分解性高分子材料之分解機制 44
2.4.2.2 常見之生物可分解性高分子材料 45
第三章 實驗與方法 48
3.1 研究流程 48
3.2 實驗材料與設備 49
3.2.1 實驗藥品 49
3.2.2 實驗器材 50
3.3 研究方法 51
3.3.1 土壤粒徑分析 51
3.3.2 土壤pH值分析 51
3.3.3 土壤有機質的測定 51
3.3.4 土壤氧化劑需求量(soild oxidation demand, SOD)試驗 52
3.3.5 氧化劑去除污染物和MnO2生成之批次試驗 52
3.3.6 緩釋高錳酸鉀物質之組成及配比設計 53
3.3.7 釋氧化劑組成成份迴歸分析 55
3.3.8 緩釋高錳酸鉀合成物的製作 55
3.3.9 管柱試驗 55
3.4 分析方法 58
3.4.1 TCE與降解副產物分析 58
3.4.2 高錳酸鉀濃度分析 58
3.4.3 二氧化錳分析 59
3.4.4 總錳分析 60
3.4.5 總鐵分析 60
3.4.6 亞鐵分析 60
3.4.7 六價鉻分析 60
3.4.8 氯離子分析 61
3.4.9 其他水質項目分析 62
3.4.10 掃描式電子顯微鏡分析(scanning electron microscope, SEM) 63
第四章 結果與討論 64
4.1 土壤氧化劑需求&#63870;試驗 64
4.1.1 低濃度組 65
4.1.2 高濃度組 69
4.2 氧化劑去除污染物和MnO2生成之批次試驗 72
4.2.1 以擬一階動力模擬 74
4.2.2 以二階不可逆動力模擬 76
4.2.3 二氧化錳之生成動力 80
4.3 釋高錳酸鉀物質釋放高錳酸鉀之批次實驗 82
4.3.1 比較不同高分子材料(聚已內酯)含量對合成物中氧化劑釋出之影響 83
4.3.2 比較不同高錳酸鉀含量對合成物中氧化劑釋出之影響 84
4.3.3 澱粉含量對滲透性之影響 85
4.3.4 其他增設組的釋出情形 86
4.3.5 釋出速率之比較 88
4.3.6 以迴歸分析高分子材料、高錳酸鉀及澱粉對於高錳酸鉀釋放速度之影響 94
4.3.7 緩釋高錳酸鉀合成物於釋放高錳酸根過程中之水質參數變化 95
4.4 管柱實驗 99
4.4.1 地下水、土壤基本性質分析及管柱基本操作參數 99
4.4.2 管柱內之污染物濃度累積試驗 104
4.4.3 管柱內之污染物去除試驗 105
4.4.4 緩釋高錳酸鉀合成物與管柱試驗之土壤的表面型態比較 117
4.4.5 模擬現地整治牆系統設計與緩釋高錳酸鉀合成物添加量估算 123
第五章 結論與建議 126
5.1 結論 126
5.1.1 土壤氧化劑需求量試驗 126
5.1.2 氧化劑批次實驗 127
5.1.3 緩釋高錳酸鉀合成物的設計 127
5.1.4 管柱試驗 128
5.2 建議 130
參考文獻 131

參考文獻 References
王貴仁,2002,以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究,逢甲大學環境工程與科學研究所碩士論文,台中市。
行政院環保署,2008,土壤污染管制標準,環署土字第0970031435 號令。
行政院環保署,2009,土壤及地下水整治網,http://sgw.epa.gov.tw/public/0401.asp。
&#63942;國棟、吳婉怡、邱崇瀚及顏仲玟,2008,土壤地下水整治技術發展趨勢,工業污染防治,第108期,第1-11頁。
林財富及鄭仲凱,2003,現地化學氧化技術之發展與案例分析,第八屆土壤及地下水整治研討會論文集,第127-140 頁。
洪莛豐,2010,生分解性高分子聚己內酯混摻幾丁聚醣微粒應用於生醫材料之研究,東海大學化學工程研究所碩士論文,台中市。
財團法人中興工程顧問社,2006,高錳酸鉀氧化技術於地下水污染整治之應用。
張永宜,2007,乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所碩士論文,高雄市。
梁書豪,2006,以Fenton-like 氧化處理受燃料油污染之土壤,國立中山大學環境工程研究所碩士論文,高雄市。
郭育嘉,2009,以釋氧化劑物質處理受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所碩士論文,高雄市。
陳俶季,2002,環境大地工程學,國立編譯館,台北市。
陳淑菁、蘇芳儀、盧昭蓉,2001,高分子的世界,國立科學工藝博物館。
勞工安全衛生研究所,2009,物質安全資料表。
彭惠君,2002,高錳酸鉀對水中有機物去除機制之研究,國立成功大學環境工程學系碩士論文,台南市。
曾士豪,2009,現地生物復育技術整治受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文,高雄市。
黃昆德,2004,利用高錳酸鉀氧化法處理三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文,高雄市。
黃慧貞,2001,土壤有機質對土壤水系統中低濃度非離子有機污染物吸附行為之研究,國立中央大學環境工程研究所碩士論文,中壢市。
楊國明,2006,藥物釋放之親疏水性乙基纖維素/羥丙基纖維素摻合微粒的製備與其藥物釋放之研究,國立成功大學化學工程學系博士論文,台南市。
溫一廷,2010,應用現地化學氧化技術處理受含氯溶劑污染之地下水,國立中山大學環境工程研究所碩士論文,高雄市。
經濟部工業局,2003,工廠土壤及地下水污染整治技術手冊。
經濟部工業局,2004,土壤及地下水污染整治技術手冊-評估調查及監測。
經濟部工業局,2007,石油碳氫化合物土壤及地下水污染預防與整治技術手冊。
蕭文哲,2007,高錳酸鉀氧化 TCE 程序中二氧化錳生成之動&#63882;研究,國立成功大學環境工程學系碩士論文,台南市。
謝宗志,2006,聚乳酸/幾丁聚醣加&#63889;製備複合可吸收手術縫合線之製程技術及其生物性評估,逢甲大學紡織工程研究所碩士&#63809;文,台中市。
Adamson, D.T., Mcdade, J.M., and Hughes, J.B., (2003). Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environmental Science & Technology, 37, 2525-2533.
Ahmad, F., Schnitker, S.P. and Newell, C.J., (2007). Remediation of RDX-and HMX-contaminated groundwater using organic mulch permeable reactive barriers. Journal of Contaminant Hydrology, 90, 1-20.
Al, T.A., Banks, V., Loomer, D., Parker, B.L., and Mayer, K.U., (2006). Metal mobility during in situ chemical oxidation of TCE by KMnO4. Journal of Contaminant Hydrology, 88, 137-152.
Aroguz, A.Z., Baysal, K., Tasdelen, B., and Baysal, B.M., (2011). Preparation, characterization, and swelling and drug release properties of a crosslinked chitosan-polycaprolactone gel. Journal of Applied Polymer Science, 119, 2885-2894.
Aulenta, F., Beccari, M., Majone, M., Papini, M.P., and Tandoi, V., (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43, 161-168.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M.P. and Majone, M., (2008). Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science and Technology, 57, 921-925.
Barton, C.S., Stewart, D.I., Morris, K. and Bryant, D.E., (2004). Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. Journal of Hazardous Materials, B116, 191-204.
Berthouex, P.M. and Brown, L.C., (2002). statistics for environmental enginneers. Lewis Publishers, Second Edition.
Block, P.A., Brown, R.A., and Robinson, D., (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds.
Borgquist, P., K&ouml;rner, A., Piculell, L., Larsson, A., and Axelsson, A., (2006). A model for the drug release from a polymer matrix tablet—effects of swelling and dissolution. Journal of Controlled Release, 113, 216-225.
Brar, S.K., Verma, M.R., Surampalli, Y., Misra, K., Tyagi, R.D.N., and Meunier, J.F., (2006). Blais, Bioremediation of hazardous wastes-A review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
Brown, R.A., Robinson, D., Skladany, G., and Loeper, J., (2003). Response to naturally occurring organic material: permanganate versus persulfate. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1692-1698, May 12-16, Gent, Belgium.
Cai, Q., Bei, J., and Wang, S., (2000). Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and epsilon-caprolactone. Journal of Biomaterials Science-Polymer Edition, 11, 273-288.
Conrad, S.H., Glass, R.J., and Peplinski, W.J., (2002). Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. Journal of Contaminant Hydrology, 58, 13-49.
Crimi, M.L. and Ko, S., (2009b). Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere, 74, 847-853.
Crimi, M.L., Quickel, M., and Ko, S., (2009a). Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: Evaluation in 1-D transport systems. Journal of Contaminant Hydrology, 105, 69-79.
Crimi, M.L. and Siegrist, R.L., (2004). Impact of reaction conditions on MnO2 genesis during permanganate oxidation. Journal of Environmental Engineering, 130, 562-572.
Dash, S., Patel, S., and Mishra, B.K., (2009). Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron, 65, 707-739.
Dijkshoorn P., (2003). In-situ chemical oxidation of chlorinated solvents with potassium permanganate on a site in Belgium. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent, Belgium.
Donne, S.W., Hollenkamp, A.F., and Jonesa, B.C., (2010). Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. Journal of Power Sources, 195, 367-373.
Feng, C.H. and Lu, C.Y., (2010). A micro-scale model to monitor the major proteins in human urine before and after medication with angiotensin-converting enzyme inhibitor: a preliminary study. Journal of Taylor & Francis, 43. 2705-2715.
Ferguson, S.H., Woinarski, A.Z., Snape, I., Morris, C.E., and Revill, A.T., (2004). A field of in situ chemical oxidation to remediate long-term diesel contaminated antarctic soil. Cold Regions Science and Technology, 40, 47-60.
Forsey, S.P., Thomson, N.R., and Barker, J.F., (2010). Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere, 79, 628-636.
Geller, J.T. and Hunt, J.R., (2003). Mass transfer correlations for non-aqueous phase liquid dissolution from regions with high initial saturations. Water Resources Research, 39, 1-11, SBH 4.
Gemili, S., Yemenicioglu, A., and Alt&#305;nkaya, S.A., (2009). Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food Engineering 90, 453-462
Guo, S.T., Huang, Y.Y., Wei, T., Zhang, W.D., Wang, W.W., Lin, D., Zhang, X., Kumar, A., Du, Q.A., Xing, J.F., Deng, L.D., Liang, Z.C., Wang, P.C., Dong, A.J., and Liang, X.J., (2011). Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 32, 879-889.
Haselow, J.S., Siegrist, R.L., Crimi, M.L., and Jarosch, T., (2003). Estimating the total oxidant demand for in situ chemical oxidation design. Remediation, 13, 5-16.
Heiderscheidt, J.L., Crimi, M.L., Siegrist, R.L., and Singletary, M.A., (2008a). Optimization of full-scale permanganate ISCO system operation: laboratory and numerical studies. Ground Water Monitoring & Remediation, 28, 72-84.
Heiderscheidt, J.L., Siegrist, R.L., and Illangasekare, T.H., (2008b). Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. Journal of Contaminant Hydrology, 102, 3-16.
Heimann, A.C., Friis, A.K., and Jakobsen, R., (2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research, 39, 3579-3586.
Henderson, T.H., Mayer, K.U., Parker, B.L., and Al, T.A., (2009). Three-dimensional density-dependent flow and multicomponentreactive transport modeling of chlorinated solvent oxidation by potassium permanganate. Journal of Contaminant Hydrology, 106,195-211.
Hoelen, T.H. and Reinhard, M., (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15, 395-403.
H&oslash;nning, J., Broholm, M.M., and Bjerg, P.L., (2007). Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials. Journal of Contaminant Hydrology, 90, 221-239.
Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., and Dobbs, G.M., (2002). Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere, 46, 815-825.
Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., and Dobbs, G.M., (2001). Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials B87, 155-169.
Hyun, S.P. and Hayes, K.F., (2009). Feasibility of using in situ FeS precipitation for TCE degradation. Journal of Environmental Engineering, 135, 1009-1014.
ITRC (The Interstate Technology & Regulatory Council), (2005). Technical and regulatory guidance for in situ chemical oxidation 2nd Ed.
ITRC (The Interstate Technology & Regulatory Council), (2008). In situ bioremediation of chlorinated ethene DNAPL source zones.
Jang, W. and Aral, M.M., (2008). Effect of biotransformation on multispecies plume evolution and natural attenuation. Transport in Porous Media, 72, 207-226.
Juang, R.H. and Storey, D., (2003). Correlation of characteristics of gel extrusion module (GEM) tablet formulation and drug dissolution rate. Journal of Controlled Release, 89, 375-385.
Kang, N., Hua, I., and Rao, P.S.C., (2004). Production and characterization of encapsulated potassium permanganate for sustained release as an in situ oxidant. Industrial and Engineering Chemistry Research, 43, 5187-5193.
Kao, C.M., Chen, K.F., Chen, Y.L., and Chen. T.Y., (2004). Biobarrier system for remediation of TCE-contaminated aquifers. Bulletin of Environmental Contamination and Toxicology, 37, 87-93.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., and Wu, W.S., (2003). Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research, 37, 4885-4894.
Kao, C.M., Huang, K.D., Wang, J.Y., Chen, T.Y., and Chien, H.Y., (2008). Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study. Journal of Hazardous Materials, 153, 919-927.
Kao, C.M., Huang, W.Y., Chang, L.J., Chien, H.Y., and Hou, F., (2005). Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site, Water Science and Technology, 53, 321-328.
Kelly, K.L., Marleym, M.C., and Sperry, K.L., (2002). In-situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.
Ko, S.O. and Ji, S.H., (2007). In situ push-pull tests for the determination of TCE degradation and permanganate consumption rates. Environmental Geology, 53, 359-364.
LaCoste, A., Schaich, K.M., Zumbrunnen, D., and Yam, K.L., (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science, 18, 77-87.
Lanza, R.P., Langer, R., and Vancanti, J., (2000). Principles of tissue engineering(2nd edition). Academic Press.
Lee, E.S., Seol, Y., Fang, Y.C., and Schwartz, F.W., (2003). Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environmental Science and Technology, 37, 2540-2546.
Lee, B.S., Kim, J.H., Lee, K.C., Kim, Y.B., Schwartz, F.W., Lee, E.S., Wood, N.C., and Lee, M.K., (2008a). Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: A larger flow-tank study. Chemosphere, 74, 745-750.
Lee, E.S., Liu, G., Schwartz, F.W., Kim, Y., and Ibaraki, M., (2008b). Model-based evaluation of controlled-release systems in the remediation of dissolved plumes in groundwater. Chemosphere, 72, 165-173.
Lee, E.S. and Schwartz, F.W., (2006). Characteristics and applications of controlled-release KMnO4 for groundwater remediation. Chemosphere, 66, 2058-2066.
Lee, E.S. and Schwartz, F.W., (2007a). Characterization and optimization of long-term controlled release system for groundwater remediation: a generalized modeling approach. Chemosphere, 69, 247-253.
Lee, E.S., Woo, N.C., Schwartz, F.W., Lee, B.S., Lee, K.C., Woo, M.H., Kim, J.H., and Kim, H.K., (2007b). Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: A pilot-scale flow-tank study. Chemosphere, 71, 902-910.
Li, X.D. and Schwartz, F.W., (2004a). DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids. Journal of Contaminant Hydrology, 68, 39-53.
Li, X.D. and Schwartz, F.W., (2004b). DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates. Journal of Contaminant Hydrology, 68, 269-287.
Li, Z., (2004). Surfactant-enhanced oxidation of trichloroethylene by permanganate––proof of concept. Chemosphere, 54, 419-423.
Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L., (2004a). Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate recox couple. Chemosphere, 55, 1213-1223.
Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L., (2004b). Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion. Chemosphere, 55, 1225-1233.
Liang, S.H., Kao, C.M., Kuo, Y.C., and Chen, K.F., (2010). Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. Journal of Hazardous Materials.
Liang, S.H., Kao, C.M., Kuo, Y.C., Chen, K.F., and Yang, B.M., (2011). In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Research.
Liao, H.T. and Wu, C.S., (2009). Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch. Materials Science and Engineering A 515, 207-214.
Liu, S.J., Jiang, B., Huang, G.Q., and Li, X.G., (2006). Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Research, 40, 3401-3408.
Loomer, D.B., Al, T.A., Banks, V.J., Parker, B.L., and Mayer, K.U., (2010). Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4. Environmental Science & Technology, 44, 5934-5939
Loomer, D.B., Al, T.A., Weaver, L., and Cogswell, S., (2007). Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. American Mineralogist, 92, 72-79.
MacKinnon, L.K. and Thomson, N.R., (2002). Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. Journal of Contaminant Hydrology, 56, 49-74.
Mallapragada, S.K. and Pappas, N.A., (1997). Crystal dissolution-controlled release systems: I. Physical characteristic and modeling analysis. Journal of Controlled Release, 45, 87-94.
Manna, U. and Patil, S., (2009). Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan. The Journal of Physical Chemistry. B, 113, 9137-9142.
May-Hernandez, L., Hernandez-Sanchez, F., Gomez-Ribelles, J.L., and Serra, R.S.I., (2011). Segmented poly(urethane-urea) elastomers based on polycaprolactone: structure and properties. Journal of Applied Polymer Science, 119, 2093-2104.
Mumford, K.G., Lamarche, C.S., and Thomson, N.R., (2004). Natural oxidant demand of aquifer materials using the push-pull technique. Journal of Environmental Engineering, 130, 1139-1146.
Mumford, K.G., Thomson, N.R., and Allen-King, R.M., (2005). Bench-scale investigation of permanganate natural oxidant demand kinetics. Environmental Science & Technology, 39, 2835-2840.
Nambi, I. and Powers, S., (2003). Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resources Research, 39, 1-11.
Natarajan, V., Krithica, N., Madhan, B., and Sehgal, P.K., (2011). Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. Journal of Pharmaceutical Sciences, 100, 195-205.
Oesterreich, R.C. and Siegrist, R.L., (2009). Quantifying volatile organic compounds in porous media: effects of sampling method attributes, contaminant characteristics and environmental conditions. Environmental Science & Technology, 43, 2891-2898.
Pang, X.A., Zhuang, X.L., Tang, Z.H., and Chen, X.S., (2010). Polylactic acid (PLA): research, development and industrialization. Biotechnology Journal, 5, 1125-1136.
Pant, P. and Pant, S., (2010). A review: advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22, 116-126.
Park, J.B., Lee, S.H., Lee, J.W., and Lee, C.Y., (2002). Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). Journal of Hazardous Materials, B95, 65-79.
Petri, B.G., Siegrist, R.L., and Crimi, M.L., (2008). Effects of groundwater velocity and permanganate concentration on DNAPL mass depletion rates during in situ oxidation. Journal of Environmental Engineering, 134, 1-13.
Reitsma, S. and Marshall, M., (2000). Experimental study of oxidation of pooled NAPL. In G.B. Wickramanayake et al. (ed.) Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, 25-32.
Rezende, K.R., Mundim, I.M., Teixeira, L.S., Souza, W.C., Gratao, M.Z., and Bellorio, K.B., (2007). Determination of captopril in human plasma, using solid phase extraction and high-performance liquid chromatography, coupled to mass spectrometry: Application to bioequivalence study. Journal of Chromatography B, 850, 59-67.
Roam, J.L., Xu, H., Nguyen, P.K., and Elbert, D.L., (2010). The formation of protein concentration gradients mediated by density differences of poly(ethylene glycol) microspheres. Biomaterials, 31, 8642-8650.
Rosa, D.S., Lopes, D.R., and Calil, M.R., (2005). Thermal properties and enzymatic degradation of blends of poly(epsilon-caprolactone) with starches. Polymer Testing, 24, 756-761.
Ross, C.M., Murdoch, L.C., David L., Freedman, D.L., and Siegrist, R.L., (2005). Characteristics of potassium permanganate encapsulated in polymer. Journal of Environmental Engineering-ASCE, 131, 1203-1211.
Sahoo, S., Sasmal, A., Sahoo, D., and Nayak, P., (2010). Synthesis and characterization of chitosan-polycaprolactone blended with organoclay for control release of doxycycline. Journal of Applied Polymer Science, 118, 3167-3175.
Sant, S., Hancock, M.J., Donnelly, J.P., Iyer, D., and Khademhosseini, A., (2010). Biomimetic gradient hydrogels for tissue engineering. The Canadian JournaL of Chemical Engineering, 88, 899-911.
Schroth, M.H., Oostrom, M., Wietsma, T.W., and Istok, J.D., (2001). In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50, 79-98.
Shaker, A.M., El-Khatib, R.M., and Abdel-Mohsen, L., (2009). Further mechanistic orientation for the oxidation reaction between alkaline permanganate and poly galacturonate methyl ester. Novel spectrophotometric tracer of intrahypomanganate(V) – Intermediate. Carbohydrate Polymers, 78, 710-716.
Shih, Y.H., (2007). Sorption of trichloroethylene in humic acid studied by experimental investigations and molecular dynamics simulations. Soil Science Society of America Journal , 71, 1813-1821.
Siegrist, R.L., Urynowicz, M.A., Crimi, M.L., and Lowe, K.S., (2002). Genesis and effects of particles produced during in situ chemical oxidation using permanganate. Journal of Environmental Engineering, 128, 1068-1079.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., and Lowe, K.S., (2001). Principle and practices of in situ chemical oxidation using permanganate. Battelle Press.
Soares, J.S., Moore, J.E., and Rajagopal, K.R., (2010). Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. Journal of Medical Devices-Transactions of The ASME, 4, article number: 041007.
Sokolsky-Papkov, M., Golovanevski, L., Domb, A.J., and Weiniger, C.F., (2010). Poly(DL:lactic acid-castor oil) 3:7-bupivacaine formulation: reducing burst effect prolongs efficacy in vivo. Journal of Pharmaceutical Sciences, 99, 2732-2738.
Sponza, D.T., (2005). Biotransformation of carbon tetrachloride and anaerobic granulation in a upflow anaerobic sludge blanket reactor. Journal of Environmental Engineering, 131, 425-433.
Struse, A.M., Siegrist, R.L., Dawson, H.E., and Urynowicz, M.A., (2002). Diffusive transport of permanganate during in situ oxidation. Journal of environmental engineering, 128, 327-334.
Su, S.K., Wu, C.S., Siao, J.W., Yen, F.S., Wu, J.Y., and Huang, C.M., (2010). Biodegradable blends prepared from polycaprolactone and poly(glutamic acid): structure, thermal properties, and biodegradability. Polymer-Plastics Technology and Engineering, 49, 1361-1370.
Tabi, T., Sajo, I.E., Szabo, F., Luyt, A.S., and Kovacs, J.G., (2010). Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters, 4, 659-668.
Thomson, N.R., Hood, E.D., and Farquhar, G.J., (2007). Permanganate treatment of an emplaced DNAPL source. Ground Water Monitoring & Remediation, 27, 74-85.
Tsai, T.T., Kao, C.M., Hong, A., Liang, S.H., and Chien, H.Y., (2008). Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332, 130-137.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Liang, S.H., and Chien, H.Y., (2009). Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. Journal of Hazardous Materials, 161, 111-119.
Tsitonaki, A., Petri, B., Crimi, M.L., Mosb&aelig;k, H., Siegrist, R.L., and Bjerg, P.L., (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Environmental Science and Technology, 40, 55-91.
U.S. EPA, (2007). Green remediation and the use of renewable energy for remediation projects. Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
Urynowicz, M.A. and Siegrist, R.L., (2000). Chemical degradation of TCE DNAPL by permanganate. in: proceedings of the second international conference on remediation of chlorinated and recalcitrant compounds, monterey, CA, 75-82.
Urynowicz, M.A., (2008). In situ chemical oxidation with permanganate: assessing the competitive interactions between target and nontarget compounds. Soil & Sediment Contamination, 17, 53-62.
Urynowicz, M.A., Balu, B., and Udayasankar, U., (2008). Kinetics of natural oxidant demand by permanganate in aquifer solids. Journal of Contaminant Hydrology, 96, 187-194.
Vancea, S., Imre, S., Donath-Nagy, G., Bela, T., Nyulas, M., Muntean, T., and Borka-Balas, R., (2009). Determination of free captopril in human plasma by liquid chromatography with mass spectrometry detection. Talanta, 79, 436-441.
Vesela, L., Nemecek, J., Siglova, M. and Kubal, M., (2006). The biofiltration permeable reactive barrier: practical experience from synthesia. International Biodeterioration & Biodegradation, 58, 224-230.
Waldemer, R.H., and Tratnyek, P.G., (2006). Kinetics of contaminant degradation by permanganate. Environmental Science & Technology, 40, 1055-1061.
West, M.R., Grant, P.G., Gerhard, J.I., and Kueper, B.H., (2008). The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate. Advances in Water Resources, 31, 324-338.
Woo, N.C., Hyun, S.G., Park, W.W., and Schwartz, F.W., (2009). Characteristics of permanganate oxidation of TCE at low reagent concentrations. Environmental Technology, 30, 1337-1342.
Wu, C.S., (2003a). Performance of an Acrylic Acid Grafted Polycaprolactone/Starch Composite : Characterization and Mechanical Properties. Journal of Applied Polymer Science, 89, 2888-2895.
Wu, C.S., (2003b). Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polymer Degradation and Stability 80, 127-134.
Wu, C.S., (2005a). A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46, 147-155.
Wu, C.S., (2005b). Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment. Macromolecular Bioscience 5, 352-361.
Wu, C.S., (2008). Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species. Macromolecular Bioscience 8, 560-567.
Wu, C.S., (2009). Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polymer Degradation and Stability 94, 1076-1084.
Wu, C.S. and Liao, H.T., (2005). A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer 46, 10017-10026.
Wu, K.J., Wu, C.S., and Chang, J.S., (2007). Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochemistry 42, 669-675.
Wu, Y.W., Huang, G.H., Chakma, A., and Zeng, G.M., (2005). Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221-232.
Xu, X. and Thomson, N.R., (2009). A long-term bench-scale investigation of permanganate consumption by aquifer materials. Journal of Contaminant Hydrology, 110, 73-86.
Xu, X. and Thomson, N.R., (2008). Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. Journal of Environmental Engineering, 134, 353-361.
Yan, J., Li, J.M., Runge, M.B., Dadsetan, M., Chen, Q.S., and Lu, L.C., (2011). Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. Journal of Biomaterials Science-Polymer edition, 22, 489-504.
Yan, Y.E. and Schwartz, F.W., (1999). Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology, 37, 343-365.
Yan, Y.E. and Schwartz, F.W., (2000) kinetics and mechanisms for TCE oxidation by permanganate. Environmental Science & Technology, 34, 2535-2541.
Yang, M., Wang, P., Huang, C.Y., Ku, M.S., Liu, H., and Gogos, C., (2010). Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing. International Journal of Pharmaceutics, 395, 53-61.
Yew, G.H., Mohd-Yusof, A.M., Mohd-Ishak, Z.A., and Ishiaku, U.S., (2005). Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composite. Polymer Degradation and Stability, 90, 488-500.
Yussuf, A.A., Massoumi, I., and Hassan, A., (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and The Environment, 18, 422-429.
Zhai, X.H., Hua, I., Rao, P.S.C., and Lee, L.S., (2006). Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. Journal of Contaminant Hydrology, 82, 61-74.
Zhang, H.N., Lin, C.Y., and Hollister, S.J., (2009). The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials, 30, 4063-4069.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.160.216
論文開放下載的時間是 校外不公開

Your IP address is 18.220.160.216
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code