Responsive image
博碩士論文 etd-0803111-161019 詳細資訊
Title page for etd-0803111-161019
論文名稱
Title
具有源/汲極束縛點且自我對齊的新穎雙通道金氧半場效電晶體之短通道效應與射頻/類比性能特性探討
Investigation of Short-Channel Behaviors and RF/analog Performance in a Novel Self-Aligned Dual-Channel Source/Drain-Tied MOSFET
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-03
關鍵字
Keywords
射頻/類比、源/汲極束縛點、雙通道、自我對齊、超薄矽本體
source/drain-tied, RF/analog, extremely thin (ET) body, dual-channel, self-aligned
統計
Statistics
本論文已被瀏覽 5723 次,被下載 0
The thesis/dissertation has been browsed 5723 times, has been downloaded 0 times.
中文摘要
在本論文中,我們提出了一個具有源/汲極束縛點且自我對齊的超薄矽本體新穎雙通道金氧半場效電晶體(DC-SDT MOSFET),製程則是採用磊晶之矽鍺/矽來完成,所以我們並沒有使用昂貴的SOI基板,而是使用Bulk基板,這可以說是大大的降低製作成本,我們也同時研究了元件之直流特性以及在射頻/類比(RF/analog)上元件之基本性能,變化環境溫度對於元件操作性能上的影響也將一一被探討,並且與相似的架構來做比較,例如:本體束縛點(body-tied, DC-BT MOSFET)以及傳統之雙通道電晶體(DC-SOI MOSFET),根據ISE-TCAD 10.0之二維模擬結果,對於DC-BT MOSFET而言,我們提出之DC_SDT MOSFET改善之元件性能,例如: Ioff降低了47.6%,切換速度(switching speed)增強了18.1%,次臨界斜率(subthreshold swing)改善了13%,電壓增益增強了25%,而對於DC-SOI MOSFET而言,我們提出之DC-SDT MOSFET改善的元件性能包括: Ion增強了11.3%,晶格溫度在上通道與下通道分別降低了35.7%和35.5%,電壓增益增強了15%。而我們並不單單是與上述兩個元件做比較,也和現今之主流元件做了比較,例如: FinFET、Gate-all-around,經由比較後,我們確定我們提出之DC-SDT MOSFET不管是在電流驅動能力或是抑止短通道效應的能力上,都是較好的,所以對於微縮而言,DC-SDT MOSFET的確是個有潛力的元件。
Abstract
In this thesis, a novel fully self-aligned bulk-Si device named dual-channel source/drain-tied (DC-SDT) MOSFET with extremely thin (ET) body is proposed. The process utilizes the multiple epitaxial growths of SiGe/Si layers, so the starting material is bulk-Si wafer instead of the SOI wafer. We have investigated the RF/analog performance, and the high temperature induced device stability degradation has also been also investigated. Moreover, we have compared this structure with the other similar transistors such as: body-tied MOSFET (DC-BT MOSFET) and conventional dual-channel MOSFET (DC-SOI MOSFET). Based on the simulation results, for the DC-BT MOSFET, our proposed DC-SDT MOSFET has improved the device performances such as: Ioff decreased 47.6%, switching speed increased 18.1%, S.S. improved 13%, and voltage gain increased 25%. Whereas for the DC-SOI MOSFET, our proposed DC-SDT MOSFET has also improved the device performances such as: Ion increased 11.3%, reduction of lattice temperature 35.7% and 35.5 in the top and bottom channels, voltage gain increased 15%. We not only compared with the above two similar transistors, but also compared to the other mainstream devices, such as: FinFET and Gate-all-around. After the comparisons, we confirm that the proposed DC-SDT MOSFET has better ON-state current and short-channel behaviors. For the scaling, DC-SDT MOSFET can truly become one of the strong candidates.
目次 Table of Contents
第一章 導論 1
1.1 背景 1
1.2 論文評述 2
1.3 動機 8
第二章 元件設計與模擬 10
2.1 元件的設計 10
2.2 元件模擬所用之物理模型說明 12
第三章 結果與討論 13
3.1 元件之直流特性比較 13
3.2 環境溫度對於元件性能之影響 27
3.3 元件之射頻/類比性能之比較 31
3.4 環境溫度對於射頻/類比性能之影響 37
3.5 DC-SDT MOSFET與參考文獻中元件特性之比較 40
第四章 結論與未來發展 43
4.1 結論 43
4.2 未來發展 44
參考文獻 45
個人著作 51
共同著作 53
個人得獎相關文件 58

參考文獻 References
[1] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, J. Kuss, L. F. Edge, A. Kimball, S. Kanakasabapathy, S.Schmitz, A. Reznicek, T. Adam, H. He, S. Mehta, A. Upham, S. -C. Seo, J. L. Herman, R. Johnson, Y. Zhu, P.Jamison, B. S. Haran, Z. Zhu, S. Fan, H. Bu, D. K. Sadana, P. Kozlowski, J. O'Neill, B. Doris, and G. Shahidi, “Extremely Thin SOI (ETSOI) Technology: Past, Present, and Future,” in Proc. IEEE Int. SOI Conf., Oct. 2010, pp. 1-4.
[2] C. Fenouillet-Beranger, O. Thomas, P. Perreau, J-P. Noel, A. Bajolet, S. Haendler, L. Tosti, S. Barnola, R. Beneyton, C. Perrot, C. de Buttet, F. Abbate1, F. Baron1, B. Pernet1, Y. Campidelli, L. Pinzelli, P. Gouraud, M. Cassé, C. Borowiak, O. Weber, F. Andrieu, K. K. Bourdelle, B.Y. Nguyen, F. Boedt, S. Denorme, F. Boeuf, O. Faynot, and T.Skotnicki1, “Efficient Multi-VT FDSOI technology with UTBOX for low power circuit design,” in VLSI Symp. Tech. Dig., Jun. 2010, pp. 65-66.
[3] S. Abe, Y. Miyazawa, Y. Nakajima, T. Hanajiri, T. Toyabe, and T. Sugano, “Suppression of DIBL in deca-nano SOI MOSFETs by controlling permittivity and thickness of BOX layers,” in Proc. 10th Conf. Ulti. Integr. Silicon, Mar. 2009, pp. 329-332.
[4] J. P. Colinge, J. T. Park, and C. A. Colinge, “SOI Devices for Sub-0.1μm Gate Lengths,” in Proc. 23rd Int. Conf. Microelectron., May 2002, pp. 109-113.
[5] J. R. Schwank, V. Ferlet-Cavrois, M. R. Shaneyfelt, P. Paillet, and P. E. Dodd, “Radiation Effects in SOI Technologies,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 522–538, Jun. 2003.
[6] J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, “Radiation Effects in MOS Oxides,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1833–1853, Aug. 2008.
[7] E. Sangiorgi, B. Ricco, and L. Selmi, “Three-Dimensional Distribution of CMOS Latch-Up Crrent,” IEEE. Electron Devices Letters, vol. 8, no. 4, pp. 154–156, Apr. 1987.
[8] J.-P. Colinge, Silicon-on-Insulator Technology: Material to VLSI, Amsterdam, in Netherland, Kluwer, 1991.
[9] R. Wang, J. Zhuge, R. Huang, D.-W. Kim, Donggun Park, and Y. Wang, “Investigation on Self-Heating Effect in Gate-All-Around Silicon Nanowire MOSFETs From Top-Down Approach,” IEEE. Electron Devices Letters, vol. 46, no. 4, pp. 729–737, Apr. 1999.
[10] C. Fiegna, Y. Yang, E. Sangiorgi, and A. G. O’Neill, “Analysis of Self-Heating Effects in Ultrathin-Body SOI MOSFETs by Device Simulation,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 233–244, Jan. 2008.
[11] A. O. Adan, K. Higashi, and Y. Fukushima, “Analytical Threshold Voltage Model for Ultrathin SOI MOSFET’s Including Short-Channel and Floating-Body Effects,” IEEE Trans. Electron Devices, vol. 46, no. 4, pp. 729–737, Apr. 1999.
[12] J.-Y. Choi, and J. G. Fossum, “Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1384–1391, Jun. 1991.
[13] J. Zhuge, Y. Tian, R. Wang, R. Huang, Y. Wang, B. Chen, J. Liu, X. Zhang, and Y.Wang, “High-Performance Si Nanowire Transistors on Fully Si Bulk Substrate From Top-Down Approach: Simulation and Fabrication,” IEEE Trans. Nanotechnol., vol. 9, no. 1, pp. 114–122, Jan. 2010.
[14] J.-T. Lin, and Y.-C. Eng, “Influence of Block Oxide Width on a Silicon-on-Partial-Insulator Field-Effect Transistor,” IEEE Trans. Electron Devices, vol. 54, no. 11, pp. 2893–2900, Nov. 2007.
[15] J.-T. Lin, Y.-C. Eng, H.-Y. Huang, S.-S. Kang, P.-H. Lin, K.-K. Kao, J.-D. Lin, Y.-M. Tseng, Y.-C. Tsai, and H.-J. Tseng, “Short-Channel Characteristics of Self-Aligned Π-Shaped Source/Drain Ultrathin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1480–1486, Jun. 2008.
[16] Y.-C. Eng, J.-T. Lin, C.-H. Kuo,P.-H. Lin, Y.-H. Fan, and H.-H. Chen, “Numerical Study of a Highly Scaled Bulk MOSFET With Block Oxide and Source/Drain-Tied Structure,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1381–1387, May 2011.
[17] R. Yan, R. Duane, P. Razavi, A. Afzalian, I. Ferain, C.-W. Lee, N. D. Akhavan, B.-Y. Nguyen, K. K. Bourdelle, and J.-P. Colinge, “LDD and Back-Gate Engineering for Fully Depleted Planar SOI Transistors with Thin Buried Oxide,” IEEE Trans. Electron Devices, vol. 57, no. 6, pp. 1319–1326, Jun. 2010.
[18] G. Ilicali, W. Weber, W. Rosner, L. Dreeskornfeld, J. Hartwich, J. Kretz, T. Lutz',J.-P. Mazellier', M. Stadelel, M. Specht', J.R. Luyken', E. Landgraf',F. Hofmann', L. Risch, R. Kasmaier, and W. Hansch, “Planar Double Gate Transistors with Asymmetric Independent Gates,” in Proc. IEEE Int. SOI Conf., Oct. 2005, pp. 126-127.
[19] F. Allibert, A. Zaslavsky, J. Pretet, and S. Cristoloveanu, “Double-Gate MOSFETs: Is Gate Alignment Mandatory?,” in Proc. of 31st European Solid-State Device Research Conf., Sep. 2001, pp. 267-270.
[20] Y. Tian, H. Xiao, R. Huang, C. Feng, M. Chan, B. Chen, R. Wang , X. Zhang, Y. Wang, “Quasi-SOI MOSFETs—A Promising Bulk Device Candidate for Extremely Scaled Era,” IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1784–1788, Jul. 2007.
[21] C. W. Oh, S. H. Kim, D.-W. Kim, D. Park, and Kinam Kim, “Hybrid Integration of Ultrathin-Body Partially Insulated MOSFETs and a Bulk MOSFET for Better IC Performance: A Multiple-VTH Technology Using Partial SOI Structure,” IEEE Trans. Nanotechnol., vol. 31, no. 1, pp. 59–61, Jan. 2010.
[22] M. Jurczak, T. Skotnicki, M.Paoli. B.Tormen, J-L. Regolini, C.Morin. A. Schiltz, J. Martins, R. Pantel, and J. Galvier, “SON (Silicon On Nothing) -A NEW DEVICE ARCHITECTURE FOR THE ULSl ERA,” in VLSI Symp. Tech. Dig., Jun. 1999, pp. 29-30.
[23] S.-Y. Lee, S.-M. Kim, E.-J. Yoon, C.-W. Oh, I. Chung, D. Park, and K. Kim, “A Novel Multibridge-Channel MOSFET (MBCFET): Fabrication Technologies and Characteristics,” IEEE Trans. Nanotechno., vol. 2, no. 4, pp. 253–257, Dec. 2023.
[24] E. Bernard, T. Ernst, B. Guillaumot, N. Vulliet, P. Coronel, T. Skotnicki, S. Deleonibus, and O. Faynot, “Multi-Channel Field-Effect Transistor (MCFET)—Part I: Electrical Performance and Current Gain Analysis,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1243–1251, Jun. 2009.
[25] International Technology Roadmap for Semiconductor (ITRS) (2007). [Online] Available: www.itrs.net.
[26] User’s Manuals, ISE-TCAD, 2004.
[27] N. Loubet, F. Boeuf, S. Denorme, G. Bidal, E. Batail, P. Coronel, T. Skotnicki, and D. Dutartre, “Si/SiGe Epitaxy and Selective Etch Applications for Advanced Thin-Films MOSFET Structures,” in Proc. Int. Solid State Devices and Materials, Sep. 2007, p. 716.
[28] S.-Y. Lee, E.-J. Yoon, D.-S. Shin, S.-M. Kim, S.-D. Suk, M.-S. Kim D.-W. Kim, D. Park, K. Kim, and B.-i. Ryu, “Sub-25nm Single-Metal Gate CMOS Multi-Bridge-Channel MOSFET (MBCFET) for High Performance and Low Power Application,” in VLSI Symp. Tech. Dig., Jun. 2005, pp. 154-155.
[29] E. Bernard, T. Ernst, B. Guillaumot, N. Vulliet, V. Maffini-Alvarol, F. Andrieul, G. LeCarvall,P. Rivallin', C. Viziozl, Y. Campidelli, 0. Kermarrec, J.M. Hartmann', S. Borell, V. Delayel, A. Pouydebasque, A. Souifi, P. Coronel, T. Skotnicki, and S. Deleonibus', “3D stacked channels: how series resistances can limit 3D devices performance,” in Proc. IEEE Int. SOI Conf., Oct. 2007, pp.93-94.
[30] N. Loubet, F. Boeuf, S. Denorme, G. Bidal, E. Batail, P. Coronel, T. Skotnicki, and D. Dutartre, “Si/SiGe Epitaxy and Selective Etch Applications for Advanced Thin-Films MOSFET Structures,” in Proc. Int. Solid State Devices and Materials, Sep. 2007, p. 716.
[31] H. Lee, L.-E. Yu, S.-W. Ryu, J.-W. Han, K. Jeon, D.-Y. Jang, K.-H. Kim, J. Lee, J.-H. Kim, S. C. Jeon, G. S. Lee, J. S. Oh, Y. C. Park, W. H. Bae, H. M. Lee, J. M. Yang, J. J. Yoo, S. I. Kim and Y.-K. Choi, “Sub-5nm All-Around Gate FinFET for Ultimate Scaling,” in VLSI Symp. Tech. Dig., Jun. 2006, pp. 58-59.
[32] M. Li, K. H. Yeo, S. D. Suk, Y. Y. Yeoh, D.-W. Kim, T. Y. Chung, K. S. Oh, and W.-S. Lee, “Sub-10 nm Gate-All-Around CMOS Nanowire Transistors on Bulk Si Substrate,” in VLSI Symp. Tech. Dig., Jun. 2009, pp. 94-95.
[33] C. C. Wu, D. W. Lin, A. Keshavarzi, C. H. Huang, C. T. Chan, C. H. Tseng, C. L. Chen, C. Y. Hsieh, K. Y. Wong, M. L. Cheng, T. H. Li, Y. C. Lin, L. Y. Yang, C. P. Lin, C. S. Hou, H. C. Lin, J. L. Yang, K. F. Yu, M. J. Chen, T. H. Hsieh, Y. C. Peng, C. H. Chou, C. J. Lee, C. W. Huang, C. Y. Lu, F. K.Yang, H. K. Chen, L. W. Weng, P. C. Yen, S. H. Wang, S. W. Chang, S. W. Chuang, T. C. Gan, T. L. Wu, T. Y. Lee, W.S. Huang, Y.J. Huang, Y.W.Tseng, C.M. Wu, Eric Ou-Yang, K.Y. Hsu, L.T. Lin, S. B. Wang, T. M. Kwok, C. C. Su, C. H. Tsai, M. J. Huang, H. M. Lin, A. S. Chang, S. H. Liao, L. S. Chen, J. H. Chen, P. S. Lim, X. F. YU, S. Y. Ku, Y. B. Lee, P. C. Hsieh, P. W. Wang, Y. H. Chiu, S. S. Lin, H. J. Tao, M. Cao, and Y. J. Mii, “High Performance 22/20nm FinFET CMOS Devices with Advanced High-K/Metal Gate Scheme,” in IEDM Tech. Dig ., Dec. 2010, pp. 600-604.
[34] G. Bidal, F. Boeuf, S. Denorme, N. Loubet, J.L.Huguenin, P.Perreau, D.Fleury, F. Leverd, S. Lagrasta , S.Barnola, T.Salvetat ,B. Orlando1, R. Beneyton, L. Clement, R. Pantel, S. Monfray, G.Ghibaudo, and T. Skotnicki, “High velocity Si-nanodot : a candidate for SRAM applications at 16nm node and below,” in VLSI Symp. Tech. Dig., Jun. 2009, pp. 240-241.
[35] S. M. Sze, Semiconductor Devices, Physics and Technology, 2nd ed. New York: John Wiley & Sons, 2001.
[36] R. Wang, J. Zhuge, R. Huang, Y. Tian, H. Xiao, L. Zhang, C. Li, X. Zhang, and Y. Wang, “Analog/RF Performance of Si Nanowire MOSFETs and the Impact of Process Variation,” IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1288–1294, Jun. 2007.
[37] J. Zhuge, R. Wang, R. Huang, X. Zhang, and Y. Wang, “Investigation of Parasitic Effects and Design Optimization in Silicon Nanowire MOSFETs for RF Applications,” IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2142–2147, Aug. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.224.197
論文開放下載的時間是 校外不公開

Your IP address is 52.14.224.197
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code