Responsive image
博碩士論文 etd-0803112-081439 詳細資訊
Title page for etd-0803112-081439
論文名稱
Title
利用溶膠-凝膠法製備SiO2-PEG複合材料之鑑定及其在酒精純化中之應用
The characterization of SiO2-PEG hybrid materials prepared with sol-gel method and their applications to alcohol purification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
190
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-27
繳交日期
Date of Submission
2012-08-03
關鍵字
Keywords
溶膠-凝膠、核磁共振、多孔材料、四乙基矽氧烷、聚乙二醇、縮合反應、水解反應、有機無機混成材料、酒精純化
NMR, Condensation, TEOS, PEG, Porous Material, Organic-Inorganic Hybrid Material, Sol-Gel, Hydrolysis, Ethanol Purification
統計
Statistics
本論文已被瀏覽 5741 次,被下載 1390
The thesis/dissertation has been browsed 5741 times, has been downloaded 1390 times.
中文摘要
摘 要
本篇論文主要探討溶膠-凝膠法製備多孔材料之物理化學現象,開發溶膠-凝膠法水解縮合反應的快速鑑定技術,並藉由有機高分子導入溶膠-凝膠程序中,經過不同時間的熟化、乾燥及燒結程序而製備出多孔性的粉末。探討不同酸-鹼值環境下水解及縮合情形、多孔性材料比表面積、孔徑大小及多孔性材料對於酒精的純化效果,以作為其他功能性多孔性粉末材料(如低k介電材料)製備的參考。
第一階段本研究選用聚乙二醇(PEG)高分子與矽氧烷化合物進行混成作用配製前驅溶液,進一步利用液態核磁共振光譜儀探討在不同pH值、熟化時間,前驅溶液水解及縮合反應。實驗結果證明,四乙基矽氧烷(TEOS)前驅溶液(pH 3 和 pH 9)添加與未添加PEG經過熟化會產生乙醇,暗示水解及縮合反應發生,TEOS前驅溶液(pH 3) 水解及縮合速率依序為前驅溶液添加PEG 2000 > 前驅溶液添加 PEG 200 > 前驅溶液未添加PEG,然而當接上PEG,TEOS前驅溶液(pH 3)經過水解的Si-OH (siloxy)去質子的氧原子充當反應中心,結果顯示氧原子較易進行親電性取代反應,增加反應速率。相反地,TEOS前驅溶液(pH 9) 水解及縮合速率依序為前驅溶液添加PEG 200 >前驅溶液未添加PEG >前驅溶液添加 PEG 2000,當加入PEG 2000的TEOS前驅溶液反應速率最慢,由於PEG 2000糾結的鏈造成立體障礙降低水解及縮合速率,本工作可藉由液態1H NMR光譜有效觀察pH 值和熟化時間對TEOS前驅溶液水解及縮合速率影響的關聯性,藉由液態13C 和29SiNMR光譜的輔助,可得到最適化的pH 值數據,聚合物的型態/大小/濃度和TEOS前驅溶液聚合物準備的熟化時間。
第二階段藉由溶膠凝膠法結合烘箱乾燥及高溫燒結前、後製備SiO2粉末。 實驗結果顯示,加熱過程TEOS(pH3)前驅溶液添加與未添加聚乙二醇水解及縮合速率較其它pH值快,因為自由空間導致水份揮發,氨水游離減少(意即,氫氧離子量減少),引起TEOS(pH 9)前驅溶液水解縮合速率减少。當接上聚乙二醇,TEOS(pH3)前驅溶液被水解去質子產生之矽醇基中的氧原子充當反應中心,結果顯示氧原子較易於進行親電性攻擊,增加了反應速率,如此,TEOS前驅溶液(pH3)添加與未添加聚乙二醇達到最大
的粉末產率,SiO2粉末添加高分子量的聚乙二醇呈現較高的吸附容量,高分子量的聚乙二醇含較多的親水性氫氧基,經過烘箱乾燥及高溫爐燒結,TEOS前驅溶液(pH3)添加聚乙二醇所得到的SiO2粉末較未添加聚乙二醇所得到的SiO2粉末含較高的表面積,能夠增加對水的吸附性,具有潛能的SiO2 粉末吸附劑,可藉由pH值和不同分子量聚乙二醇的選擇製造而得,應用於乙醇的純化,使純化的乙醇能應用於工業及燃料油之用途。
在製備和表徵這些材料時,我們也觀察到一些有趣的自旋動力學現像。例如,在一些樣品中,我們發現其質子魔角旋轉(Magic Angle Spinning, MAS)光譜很窄,但是1H-29Si之交叉極化(Cross Polarization, CP)MAS光譜卻具有很高的靈敏度。這提示我們如何透過改變樣品製備的方式提高CPMAS效率,對如何改進CPMAS靈敏度有參考價值。
Abstract
Abstract
This thesis conducts a comprehensive investigation of the of the physical chemistry related to the TEOS-based porous materials prepared by so-gel approach and develops the fast qualification technology for the hydrolysis and condensation reaction of sol-gel process. The porous materials were prepared by introducing a polymer polyethylene glycol (PEG) into sol-gel after different aging times and with different drying and annealing processes. The effects of pH and addition of PEG on sol-gel derived SiO2 powders for purification of ethanol are studied. The methods and results of this work provide valuable reference for the development of other functional materials such as low k dielectric materials.
In the first part, the long-term behavior of the hydrolysis and condensation reaction of the tetraethoxysilane (TEOS) pre-solution at different pH values with and without addition of polyethyleneglycol (PEG) for various aging times was characterized by liquid 1H, 13C, and 29Si NMR spectroscopy.The experimental results demonstrate that alcohol was generated in the TEOS pre-solutions with and without addition of PEG at pH 3 and pH 9 after aging, implying the occurrence of hydrolysis and condensation. The rate of hydrolysis and condensation for the TEOS pre-solution at pH 3 was found to follow the trend of the pre-solution with PEG 2000 > pre-solution with PEG 200 > pre-solution without PEG.
However, after adding PEG, the oxygen atom of the deprotonated silanol group (siloxy) of the hydrolyzed TEOS pre-solution at pH3 acted as a reaction center. The result indicates that the oxygen atom is more susceptible to electrophilic attack, resulting in an increased reaction rate. Consequently, the rate of hydrolysis and condensation for of the TEOS pre-solution at pH 9 follows a different order: pre-solution with PEG 200 > pre-solution without PEG > presolution with PEG 2000. The slowest reaction rate of the

TEOS pre-solution when adding PEG 2000 is related to the tangled chains of PEG 2000 which sterically reduces the hydrolysis and condensation reaction. This work shows that the correlation between the pH and aging time on hydrolysis and condensation reaction of the TEOS pre-solution can be effectively monitored by liquid 1H NMR spectroscopy, supported by 13C and 29Si liquid NMR spectra. The data obtained should assist optimizing the pH, polymer type/size/concentration and the aging time in the preparation of polymer modified TEOS sols
In the second part, SiO2 powders were prepared by the sol-gel in combination with oven-drying method before and after annealing.The experimental result demonstrates the rate of hydrolysis and condensation occurs at a fast rate in TEOS with and without adding PEG at pH3 than in any other pH levels. Because free space can lead to the vaporization of H2O, the ionization of ammonia decreases (i.e., reduction the amount of hydroxide ion), which arises from the rate of hydrolysis and condensation decreases when TEOS at pH9. After attaching PEG, the oxygen atom of the deprotonated silanol group (siloxy) for of the hydrolyzed TEOS pre-solution at pH 3 acted as a reaction center. The result indicates the oxygen atom is more susceptible to electrophilic attack, resulting in an increased reaction rate. Thus, a maximum in the powder yield is reached for TEOS pre-solution with and without adding PEG at pH 3. The SiO2 powder with adding PEG of higher molecular weight presents higher adsorption capacities, pertaining to a greater amount of hydrophilic hydroxyl groups of PEG with higher molecular weight. After annealing, the surface area of SiO2 powder prepared from the TEOS pre-solutions increases as compared with powder without adding PEG and enhances the adsorption of water. A potential absorbent SiO2 powders for producing purified ethanol suitable for fuel and industrial use, can be fabricated by using sol-gel route by careful selection of pH and PEG molecular weight.
In addition, during the preparation and characterization of these materials, some interesting phenomena were observed, which are academically valuable. For instance, some samples show very narrow 1H MAS spectra and yet has high 1H-29Si CPMAS sensitivety. This phenomenon suggests us that CPMAS sensitivety may be improved by a new route, i.e., by properly preparing the sample so that CP efficiency is enhanced.
目次 Table of Contents
目錄
論文審定書............................................................... i
謝 誌... ... ....................................................... ....ii
摘 要... ............................................................ ..iii
Abstract..................................................................v
表目錄.......................................................... ........ xi
圖目錄........................................................ ...... .. xii
第一章 緒論......................................................... .... 1
1-1多孔性材料簡介. ................................................... .1
1-2沸石的結構與用途..................................................... .1
1-3溶膠凝膠法(sol-gel)及其水解縮合反應相關反應動力學研究................. 3
1-4溶膠凝膠法形成多孔性材料反應機制.. ....................................6
1-5本研究製備之多孔性材料與沸石的差異....................................9
1-6製程過程條件探討................................................. .....9
1-7孔洞等溫氮氣吸附分析及比表面積分析................................. ..11
1-8核磁共振光譜簡史................................................. ....13
1-9核磁共振光譜基本原理............................................. ....14
1-9-1核磁共振簡介........................................................14
1-9-2 固態核磁共振................................................... ...18
1-9-3 化學位移(Chemical Shift) ..........................................19
1-9-4 偶極-偶極作用力(Dipole- Dipole interaction) ................... ...19
1-9-5 常用固態核磁共振技術...............................................19
1-10 掃描式電子顯微鏡原理............................................. ..22
1-11 X光繞射儀原理............................................. .. .... ..22
第二章 酸鹼環境下長時間的熟化反應對水解縮合速率之影響.................. ...24
2-1 前言............................................................ ... ..24
2-2 實驗部份......................................................... .... 25
2-2-1 實驗材料材料................................................. .......25
2-2-2 實驗儀器/設備儀器/設備........................................ . ....25
2-2-3 實驗步驟........................................................ . . 26
2-2-4 樣品分析...................................................... . . . 28
2-3 結果與討論........................................................ .. .28
2-4 結論............................................................... . .42
第三章 SEM、BET及(液、固)態NMR研究TEOS粉末形成及結構.......... ....... .. .44
3-1 前言............................................................ .... .44
3-2 實驗部份.......................................................... .. .45
3-2-1 實驗材料......................................................... .. 45
3-2-2 實驗儀器/設備................................................... .. .45
3-2-3 實驗步驟........................................................ .. .45
3-3 結果與討論........................................................ .. .47
3-3-1 水解縮合之液態NMR分析.......................................... . 47
3-3-2 水解縮合之液態NMR分析......................................... . .56
3-3-3 SEM形貌示例..................................................... ..61
3-3-4 BET孔洞量測分析................................................. ..64
3-3-5 X-ray 粉末繞射量測示例.......................................... ...73
3-3-6 固態NMR分析................................................... . 75
3-3-7 樣品中Si*X訊號峰之探討...............................,. ...,. ... ..87
3-3-8 醋酸及醋酸/氨水系統前驅液形成之粉末樣品NMR分析比較..,. ...,. .. … 88
3-3-9 一個有趣的自旋動力學現象及其意義................................. ..94
3-4 結論…............................................................. ..98
第四章 多核液態NMR研究TEOS粉末純化生質酒精(水-乙醇混合液) . ............ ..102
4-1 前言.............................................................. ...102
4-2 實驗部份.......................................................... ...103
4-2-1 實驗材料........................................................ ...103
4-2-2 實驗儀器/設備................................................... ...103
4-2-3 實驗步驟........................................................ ...103
4-3 結果與討論........................................................ ...104
4-4 與市售分子篩比較酒精純化.......................................... ...108
4-5 結論........................................................... .. ...111
第五章 總結........................................................... ...113
參考文獻.............................................................. ...116
附錄一 已發表論文.................................... ............. .. ...135
附錄二 已投稿的論文.............................. .................... ...142
附錄三 固態NMR光譜鬆弛資料.............................. ............. ...143
參考文獻 References
參考文獻
【1】R. Szostak, Molecular Sieves Principles of Synthesis and Idenripcation;Van Nostrand Reinhold: New York, 1989.
【2】J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz,. C.T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 114(1992)10834.
【3】J. Y. Ying, C. P. Mehnert, M. S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials, Angewandte Chemie - International Edition, 38(1999)56.
【4】G. Bram, A. Loupy, D. Villemin, in: K. Smith (Ed.), Solid Supports and
Catalysts in Organic Synthesis, Ellis Horwood,New York, 1992.
【5】S. E. Park, D. S. Kim, J. S. Chang, W. Y. Kim, Synthesis of MCM-41 using microwave heating with ethylene glycol, Catal. Today. 44 (1998) 301.
【6】W. Lutz, W. Gessner, R. Bertram, I. Pitsch, R. Fricke, Hydrothermally resistant high-silica Y zeolites stabilized bycovering with non-framework aluminum species , Microporous Mater.12(1997)131.
【7】D. H. Everett, Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Pure Appl. Chem. 31(1972)577.
【8】邱顯烈,”以溶膠凝膠法製備Epoxy/SiO2奈米複合材及其在高透光性光電元件封裝之應用研究”,國立成功大學化學工程研究所碩士論文(2005).
【9】 A. Stein, B. J. Melde, R. C. Schroden, Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age, Adv Mater. 12(2000)1403.
【10】吳東明,”中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較. ”,國立中央大學化學研究所碩士論文(2005).
【11】 W. R. Grace, C. E. Lives, Everywhere Heterogeneous asymmetric epoxidation of cis-ethyl cinnamte over Jacobsen's catalyst immobilized in inorganic porous materials, Zeolite Structure. Grace.com. Retrieved on 2010-12-09.
(除上述文獻外,亦參考下列網址之資料:http://www.chem.ncu.edu.tw/KaoH
M/%E7%B6%B2%E9%A0%81/zeolite.htm)
【12】田佩、周禮君,1997,有機無機混成溶凝膠及其應用,強化塑膠,頁24-35。
【13】游鍚雁、陳文章,2006,高分子╱無機鍵結方式對其形態及特性應用之影響,界面科學化工運用專輯,頁121-128。
【14】吳坤陽,”溶膠凝膠法製備含銀之AZO透明導電膜之研究”,國立成功大學化學工程研究所碩士論文(2005).
【15】C. J. Brinker, O. W. Scherer, Sol-gel Science: the Physics and Chemistry of Sol-gel Processing. Academic Press, San Diego (1990)
【16】C . J. Brinker, E. P. Roth, G. W. Scherer, D. R. Tallant, Structural Evolution During TheGel to Glass, J. Non-Cryst. Solids. 71 (1985) 171

【17】A. K. Cheetham, C. J. Brinker, M. L. Mecartney, C. Sanchez, Better ceramics through chemistry V. Materials Research Society, Pittsburgh (1994)
【18】J. D. Mackenzie, E. P. Bescher, Structure, properties and potential application of ormosils. J. Sol-Gel Sci.Tech. 13 (1998) 371
【19】J. D. Mackenzie, Sol-gel research – achievements since 1981 and prospects for the future. J. Sol-Gel Sci.Tech. 26 (2003) 23.
【20】P. Innocenzi, G. Brusotin, M. Guglielmi, R. Bertani, New synthetic route to
(3-glycidoxypropyl)triethoxysilane-based hybrid or ganic-inorganic materials. Chem. Mater. 11 (1999)1672
【21】G. Schottner, Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem. Mater. 13 (2001) 3422
【22】Y. Zhang, M. Wang, Mechanical characterization and optical properties analysis of organically modified silicates. J. Non-Cryst. Solids. 271 (2000) 88
【23】Y. Liu, W. Ren, L. Y. Zhang, X.Yao, New method for making porous SiO2 thin films. Thin Solid Films. 353 (1999) 124
【24】K. Kuraoka, N. Kubo, T. Yazawa, Microporous silica xerogel membrane with high selectivity and high permanence for carbon dioxide separation. J. Sol-Gel Sci. Tech. 19 (2000) 515
【25】D. L. Green, S. Jayasundara, Y. F. Lam, M. T. Harris, Chemical reaction kinetics leading to the first Stober silica nanoparticles-NMR and SAXS investigation. J. Non-Cryst. Solids. 315 (2003) 166
【26】A. V. Blaaderen , A. Vru, Synthesis and characterization of monodisperse olloidal organo-silica spheres. J. Colloid Interface Sci. 156 (1993) 1.
【27】R. A. Assink, B .D . Kay, Sol-gel kinetics I. Functional group kinetics. J. Non-Cryst. Solids. 99 (1988) 359
【28】B. D. Kay, R. A. Assink, Sol-gel kinetics: II. Chemical speciation modeling. J. Non-Cryst. Solids. 104 (1988) 112
22【29】T. Matsoukas, E. Gulari , Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate, J. Colloid Interface Sci. 124 (1988) 252.
【30】G. H. Bogush , C. F. Zukoski, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci. 142 (1991)1
【31】C. A. Fyfe, Y. Zhang, P. Aroca, An alternative preparation of organofunctionalized silica gel and their characterization by two-dimensional high-resolution solid-state heteronuclear NMR correlation spectroscopy.J. Am. Chem. Soc. 114 (1992) 3252
【32】R. J. Hook, A 29Si NMR study of the sol-gel polymerization rates of substituted ethoxysilanes. J. Non-Cryst. Solids 195 (1996) 1
【33】B. Riegel, S. Blittersdorf, W. Kiefer, S. Hofacker, G. Schottner, Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxy silane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I. J. Non-Cryst. Solids. 226 (1998) 76
【34】B. Riegel, S. Blittersdorf, W. Kiefer, N. Husing, U. Schubert, Raman spectroscopic analysis of the sol-gel processing of Rsi(OMe)3/Si(OMe)4 mixtures. J. Molec. Struct. 410 (1997) 157
【35】S. Prabakar, R. A. Assink, Hydrolysis and condensation kinetics of two component organically modified silica sols. J. Non-Cryst. Solids. 211 (1997) 39
【36】S. Prabakar, R. A. Assink, N. K. Raman, S. A. Myers, C. J. Brinker, Identification of self- and cross-condensation products in organically modified silica sols by 29Si and 17O NMR spectroscopy. J.Non-Cryst.Solids. 202 (1996) 53
【37】C. Alie, J. P. Pirard, Preparation of low-density xerogels frommixtures of TEOSwith substituted alkoxysilanes.I.17O NMR study of the hydrolysis-condensation process. J. Non-Cryst. Solids. 320 (2003) 21
【38】J. Brus, J. Dybal, Copolymerization of tetraethoxysilane and dimethyl
(diethoxy) silane studied by 29Si NMR and ab initio calculations of 29Si NMR chemical shifts. Polymer. 40 (1999) 6933
【39】J. Brus, Solid-state NMR study of phase separation and order of water molecules and silanol groups in polysiloxane networks. J. Sol-Gel Sci. Tech. 25 (2002) 17
【40】S. Wonorahardjo, G. E. Ball, J. Hook, G. Moran, 2H NMR relaxation monitoring of gelation in tetramethoxysilane sol-gels. J. Non-Cryst. Solids. 271 (2000) 137
【41】T. Satoh, M. Akitaya, M. Konno, S. Saito, Particle size distributions produced by hydrolysis and condensation of tetraethylorthosilicate. J. Chem. Eng. Japan. 30(4) (1997) 759
【42】E. Mine, D. Nagao, Y. Kobayashi, M. Konno, Solvent effects on particle formation in hydrolysis of tetraethyl orthosilicate. J. Sol-Gel Sci. Tech. 35(3) (2005) 197
【43】J. Brus, M. Spirkova, D. Hlavata, A. Strachota,: Self-organization, structure, dynamic properties, and surface morphology of silica/epoxy films as seen by solid-state NMR, SAXS, and AFM.Macromolecules. 37 (2004) 1346
【44】X. Sun, Y. Xu, D. Jiang, D. Yang, D. Wu, Y. Sun, Y. Yang , H. Yuan , F. Deng, Study on the ammonia-catalyzed hydrolysis kinetics of single phenyltriethoxysilane and mixed phenyltriethoxysilane/tetraethoxysilane systems by liquid-state 29Si NMR, Colloids and Surfaces A: Physicochem. Eng. Aspects. 289 (2006) 149
【45】X. Yao, X. Sun, D. Wu, Y. Sun, Y. Yang, H. Yuan, F. Deng, Z. Wu, Ammonia Catalyzed Hydrolysis-Condensation Kinetics of Tetraethoxy
silane/Dimethyl diethoxysilane Mixtures Studied by 29Si NMR and SAXS, J Solution Chem. 36 (2007) 327
【46】Y. Xu, D. Wu , Y. Sun , H. Gao, H. Yuan, F. Deng, A new study on the kinetics of Stober synthesis by in-situ liquid 29Si NMR, J Sol-Gel Sci Techn. 42 (2007) 13
【47】Y. Xu, D. Wu, Y. Sun, W. Chen, H. Yuan, F. Deng, Z. Wu, Effect of polyvinylp yrrolidone on the ammonia-catalyzed sol–gel process of TEOS: Study by in situ 29Si NMR, scattering, and rheology, Colloids Surf., A. 305 (2007) 97.
【48】R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
【49】K. D. Keefer, in: D.R. Ulrich, C.J. Brinker, D.E. Clark (Eds.), Better Ceramics through Chemistry, North-Holland, New York, 1984.
【50】G. Dubois, W. Volksen, T. Magbitang, R. D. Miller, D. M. Gage, R. H. Dauskardt, Molecular Network Reinforcement of Sol–Gel Glasses , Adv. Mater. 19 (2007) 3989.
【51】 G. Dubois, W. Volksen, T. Magbitang, M. H. Sherwood, R. D. Miller, D. M. Gage, R. H. Dauskardt, Superior mechanical properties of dense and porous organic/inorganic hybrid thin films, J. Sol-Gel Sci. Technol. 48 (2008) 187
【52】S. Krause, Polymer-polymer miscibility , Pure & Appl. Chem. 58(1986)1553.
【53】G. V. Reddy , M. Bohdanecky, Temperature and solvent effects on the
unperturbed chain dimensions of bisphenoI-A polycarbonate, Polymer, 29 (1988) 1894.
【54】W. J. Ward, “Molecular sieve catalysts”, in applied industrial catalysis, Vol. 3, Academic press, New York, 1984.
【55】S. Bhatia, “Zeolite catalysis principles and application”,CRC press, Boca Raton, Floridr, 1990.
【56】C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesizedby a liquid-crystal template mechanism, Nature, 359 (1992) 710.
【57】J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 114 (1992) 10834.
【58】C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press:San Diego, CA, 1990.
【59】 J. L. Garcia-Miquel, Q. Zhang, S. J. Allen, A. Rougier, A. Blyr, H. O. Davies, A. C. Jone , T. J. Leedham, P. A. William, S. A. Impey” Nickel oxide sol–gel films from nickel diacetate for electrochromic applications” Thin Solid Films 424 (2003) 165.
【60】M. W. Colby, A. Osaka, J. D. Mackenzie, Effects of Temperature on Formation of Silica Gel. J. Non-Cryst. Solids , 82 (1986) 37.
【61】B. Malic, N. Setter, K. Brooks, M. Kosec, and G. Drazic, “Acetic Acid based Sol-Gel PLZT Thin Films: Processing and Characterization”, J. Sol-Gel Sci. Tech. 13 (1998) 833.
【62】S. Sakka, H. Kozuka, S. Kim, Various factors affecting the conversion of silicon alkoxide solution to gels. in Uhrastructure Processing of Advanced Ceramics, ed. J D. Mackenzie & D. R. Ulrich. Wiley, New York, 1988, pp.159-71.
【63】王奕凱,邱宗明李秉傑合譯非均勻系摧化原理及應用,國立編譯館渤海堂文化公司(1993)
【64】李青雲,“探討中孔徑氧化矽材料結構中之奈米錫-氧的鍵結形式”國立中央大學化學所,碩士論文﹐民國九十年
【65】A. Medek, S. J. Harwood, L. Frydman, Multiple-Quantum Magic- Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids, J. Am. Chem. Soc. 117 (1995) 12779..
【66】R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford, 1987.
【67】M. H. Levitt, Symmetry-based pulse sequences in magic-angle spinning solidstateNMR, in: Encyclopedia of NMR, Wiley, Chichester, 2002, pp. 165–196.
【68】M. Mehring,High Resolution NMR of Solid, Springer-Verlag, Berlin, 1983.
【69】D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis / Edition 5, Saunders College Publishing (1998), pp.279 pp.445-491. pp.549.
(核磁共振光譜儀原理除上述參考資料外,亦參考下列網址提供之資料彙整而成(1)http://www.wretch.cc/blog/Linyda/24037436(2).http://140.117.
34.2/faculty/phy/sw_ding/sw_ding_c_teaching.htm)
【70】C. C. Sun, J. E. Mark, Comparisons among the reinforcing effects provided by various silica-based fillers in a siloxane elastomer, Polymer .30 (1989) 104.
【71】C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic-inorga nic nanocomposites, J. Mater. Chem. 15 (2005) 3559.
【72】 H. Dislich, New Routes to Multicomponent ‘Oxide Glasses, Angew. Chem., Int.
Ed. Engl 10(1971)363.
【73】L.C. Klein, Sol–gel technology for thin films, fibers, preforms, electronics, and specialty shapes, Noyes Publications, New Jersey, 1988.
【74】C. J. Brinker, G.W. Scherer, Sol–gel science: the physics and chemistry of sol–gel processing (hardcover), Academic Press, New York, 1990.
【75】M. Toki, Synthesis of monodispersed organic-inorganic hybrid spheres , J. Sol-Gel Sci. Technol. 2 (1994) 97.
【76】M. H. Lee, S. G. Oh, S .K . Moon, S.Y. Bae, Preparation of Silica Particles Encapsulating Retinol Using O/W/O Multiple Emulsions J. Colloid Interface Sci. 240 (2001) 83.
【77】C. Oh, C. D. Ki, J. Y. Chang, S. Oh, Preparation of PEG-grafted silica particles using emulsion method, Mater. Lett. 59 (2005) 929.
【78】J. Martin, B. Hosticka, C. Lattimer, P.M. Norris, Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels, J. Non-Cryst. Solids. 285 (2001) 222.
【79】A. Paula, V. Pereira, W.L. Vasconcelos, R.L. Orefice, Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity, J. Non-Cryst. Solids, 273 (2000) 180.
【80】J. Brus, M. Spirkova, D. Hlavata, A. Strachota, Self-organization, structure, dynamic properties and surface morphology of silica/epoxy films as seen by solid-state NMR, SAXS and AFM, Macromolecules. 37 (2004) 1346.
【81】 S. Fujihara, S. Kitta, Porous Phosphor Thin Films of Oxyfluoride SiO2–BaMgF4: Eu2+ Glass–Ceramics Prepared by Sol–Gel Method, Chem. Phys. Lett. 397 (2004) 479.
【82】A. Kros, M. Gerristen, V.S.I. Sparakel, N.A.J.M. Sommerdijk, J.A. Jansen, R.J.M.Nolte , Silica-based hybrid materials as biocompatible coatings for glucose sensors,Sens. Actuators, B. 81 (2001) 68.
【83】Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99 (1999) 1823.
【84】C. K. Chan, I. M. Chu, C. F. Ou, Y. W. Lin, Interfacial interactions and their influence to phase behavior in poly(vinyl pyrrolidone)/silica hybrid materials prepared by sol-gel process, Mater. Lett. 58 (2004) 2243.
【85】R. A. Assink, B. D. Kay, SOL-GEL KINETICS I. Functional group kinetics, J. Non-Cryst. Solids. 99 (1988) 359.
【86】D. L. Green, S. Jayasundara, Y. F. Lam, M.T. Harris, Chemical reaction kinetics leading to the first Stober silica nanoparticles – NMR and SAXS investigation, J. Non-Cryst. Solids. 315 (2003) 166.
【87】L. L. Hench, J. K. West, The Sol-Gel Process, Chem. Rev. 90 (1990) 33.
【88】S. Sadasivan, A. K. Dubey, Y. Li, D.H. Rasmussen, Alcoholic solvent effect on silica synthesis—NMR and DLS investigation, J. Sol-Gel Sci. Technol. 12 (1998) 5.
【89】C. A. Fyfe, P. P. Aroca, A Kinetic Analysis of the Initial Stages of the Sol-Gel Reactions of Methyltriethoxysilane (MTES) and a Mixed MTES/Tetraetho
xysilane System by High-Resolution 29Si NMR Spectroscopy , J. Phys. Chem. B .101 (1997) 9504.
【90】J. Brus, P. Kotlik, Mobility, Polyacrylate Effects on Tetraethoxysilane
Polycondensation, Chem. Mater. 8 (1996) 2739.
【91】R. E. Timms, Five-co-ordinate silicon. Kinetics of the acid-catalysed hydrolysis of nitrilotriphenoxysilanes, J. Chem. Soc., A. 0 (1971) 1969.
【92】S. S. Jada, Study of Tetraethyl orthosilicate Hydrolysis by in Situ Generation of Water, J. Am. Ceram. Soc. 70 (1987) C298.
【93】R. J. Hook, A 29Si NMR study of the sol-gel polymerisation rates of
substituted ethoxysilanes, J. Non-Cryst. Solids. 195 (1996) 1.
【94】S. J. Rosenthal, B. J. Schwartz, P. J. Rossky, Calculated photon echo signals for the aqueous solvated electron: The origin of ultrafast electronic dephasing, Chem. Phys. Lett. 229 (1999) 443.
【95】G. Wheeler, G. L. Shearer, S. Fleming, L.W. Kelts, A. Vega, R. J. Koestler, Toward a Better Understanding of B72 Acrylic Resin/Methyltrimethoxysi
lane Stone Consolidants, Mater. Res. Soc. Symp. Proc. 185 (1991) 209.
【96】A. Jitianu, A. Britchi, C. Deleanu, V. Badescu, M. Zaharescu, Comparative study of the sol–gel processes starting with different substituted Si-alkoxides, J. Non-Cryst. Solids. 319 (2003) 263.
【97】X. Liu, Z. Jin, S. Bu, T. Yin, Influences of Solvent on Properties of TiO2 Porous Films Prepared by a Sol-Gel Method from the System Containing PEG, J. Sol-Gel Sci. Technol. 36 (2005) 103.
【98】Z. Zheng, Y. Chen, R. J. Hodgson, M. A. Brook, J. D. Brennan, Sol–gel preparation of K–Co–Mo catalyst and its application, Macromol. Symp. 226 (2005) 253.
【99】 K. Kajihara, T. YAO, Macroporous morphology of the titania films prepared by a sol-gel dip-coating method from the system containing poly(ethylene glycol). Effects of molecular weight and dipping temperature, J. Sol-Gel Sci. Technol. 19 (2000) 219.
【100】J. Yu, X. Zhao, Q. Zhao, G. Wang, Preparation and Characterisation of Super-Hydrophilic Porous Ti02 Coating Films, Mater. Chem. Phys. 68 (2001) 253.
【101】J. Yu, J. C. Yu, B. Chen, X. Zhao, Z. Zheng, A. S. K. Li, Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method , J. Sol-Gel Sci.Technol. 24 (2002) 229.
【102】 E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, J. V. Smith, Silicalite, a new hydrophobic crystalline silica molecular sieve, Nature . 271 (1978) 512.
【103】D. M. Bibby, N. B. Milestone, L. P .Aldridge, Silicalite-2, a silica analogue of the aluminosilicate zeolite ZSM-11, Nature . 280 (1979) 664.
【104】Z. Li, C. M. Lew, S. Li, D. I. Medina, Y. Yan, Pure-Silica-Zeolite MEL Low-k Films from Nanoparticle Suspensions, J. Phys. Chem. B. 109 (2005) 8652.
【105】Z. Li, M. C. Johnson, M. Sun, E. T. Ryan, D. J. Earl, W. Maichen, J. I. Martin, S. Li, C. M. Lew, J. Wang, M. W. Deem, M. E. Davis, Y. Yan, Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials, Angewandte Chemie. Chem., Int. Ed. , 45 (2006) 6329.
【106】 T. Higuchi, K. Kurumada, S. Nagamine, A. W. Lothongkum, M.Tanigaki, Effect of addition of polymeric species with ether moieties on porous structure of silica prepared by sol-gel method , J. Mater. Sci. 35 (2000) 3237.
【107】C. P. Higginbotham, R. F. Browner, J. D. Jenkins, J. K. Rice, Dependence of drying technique on surface area and pore size for polyethylene glycol/tetrame thoxysilicate hybrid gels, Mater. Lett. 57 (2003) 3970.
【108】K. Kuraoka, T. Ueda, M. Sato, preparation and properties of organic-inorganic Hybrid flexible hardcoat films, J. Mater. Sci. 40 (2005) 3577.
【109】 W. Chen, H. Feng, D. He, C. Ye, High resolution solid-state NMR and DSC study of poly(ethylene glycol) silicate hybrid materials via sol–gel process, J. Appl. Polym. Sci. 67 (1998)139.
【110】P. Agren, J. B. Rosenholm, Phase Behavior and Structural Changes in
Tetraethylorthosilicate-Derived Gels in the Presence of Polyethylene Glycol, Studied by Rheological Techniques and Visual Observations, J. Colloid Interface Sci. 204 (1998) 45.
【111】K. Wongcharee, M. Brungs, R. Chaplin, Y. J. Hong, R. Pillar, Diffusion and Reactivity of Ruthenium (II) Tris(bipyridine) and Cobalt (II)Tris(bipyridine) in Organically Modified Silicates, J.Sol-Gel Sci. Technol. 23 (2002) 215.
【112】C. H. Wu, J.S. Jeng, J.L. Chia, S. Ding, Multinuclear liquid state NMR investigation of the effects of pH and addition of polyethyleneglycol on the long-term hydrolysis and condensation of tetraethoxysilane , J. Colloid Interface Sci. 353 (2011) 124.
【113】K. T. Chou, B. I. Lee, Properties of silica gels prepared from high-acid hydrolysis of tetraethoxysilane, Ceram. Int. 19 (1993) 315.
【114】周永恒, “石英玻璃中羥基的結構”武漢理工大學學報,中國建築材料科學研究院﹐民國九十二年九月第九期第二十五卷
【115】D. R. Arenson, A.S. Kertes, C.J. King, Extraction of Ethanol from Aqueous Solution with Phenolic Extractants, Ind. Eng. Chem. Res. 29 (1990) 607.
【116】T. Boudreau, G. Hill, Improved ethanol–water separation using fatty acids, Process Biochem.41 (2006) 980.
【117】S. H . Krishna, K. Prasanthi, G.V.Chowdary , C .Ayyanna, Simultaneous saccharification and fermentation of pretreated sugarcane leaves to ethanol,Process Biochem.33 (1998) 825.
【118】G. H. Pablo, M.G. Jorge, Optimization of the Design and Operation of an Extractive Distillation System for the Production of Fuel Grade Ethanol Using Glycerol as Entrainer, Ind. Eng. Chem. Res. 50(2011)3977.
【119】M. R. Ladisch, M. Voloch, J. Hong, P. Bienkowski, G.T. Tsao, Cornmeal Adsorber for Dehydration Ethanol vapors, Ind. Eng. Chem. Process Des. Dev. 23(1984)437.
【120】V. F. Andersen, J. E. Anderson, T. J. Wallington, S. A. Mueller, O. J. Nielsen, Distillation Curves for Alcohol-Gasoline Blends, Energy Fuels. 24 (2010) 2683.
【121】 J. T. Vincent, L. H. William, R. L. Joel, A.V. John, Dehydration of Alcohols in Dimethyl Sulfoxide, J.Org.Chem. 27 (1962) 2377.
【122】G. Vicente, P. Ricardo, F. Olga, F. Alicia, C. A. Juan, Dehydration of Ethanol Using Azeotropic Distillation with Isooctane , Ind. Eng. Chem. Res. 46 (2007) 4572.
【123】A. N. Anozie, E. E. Okuhon, F. N. Osuolale, J. K. Adewole, Dehydration of
Ethanol-Water Mixture Using Activated Carbons from Sawdust and Palm Kernel Shells, Sep. Sci. Technol. 45 (2010) 1482.
【124】W. W. J. Pitt, G. L. Haag, D. D. Lee, Recovery of ethanol from fermentation broths using selective sorption–desorption, Biotechnol.Bioeng. 25 (1983) 123.
【125】M. Gulati, P. J. Westgate, M. Brewer, R. Hendrickson, M. R. Ladisch, Sorptive recovery of dilute ethanol from distillation column bottoms stream, Appl. Biochem. Biotechnol. 57 (1996) 103.
【126】 F. A. Farhadpour, A. Bono, Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite: Determination of the Controlling Mass Transfer Mechanism, Chem.Eng.Process. 35 (1996) 141.
【127】 J. Y. Lee, P. J. Westgate, M. R. Ladisch,Water and ethanol sorption
phenomena on starch, AIChE J, 37( 1991) 1187.
【128】 G. H. Robertson, L. R. Doyle, A. E. Pavlath, ntensive use of biomass feedstock in ethanol conversion: The alcohol–water, vapor-phase separation, Biotechnol. Bioeng. 25 (1983) 3133.
【129】J. Hong, M. Voloch, M. R. Ladisch, T. G. Tsao, Adsorption of Ethanol-Water Mixtures by Biomass Materials. Biotechnol. Bioeng.24(1982)725
【130】 J. Y. Lee, P. J. Westgate, M. R. Ladisch, Water and ethanol sorption phenomena on starch, AIChE J. 37 (1991) 1187.
【131】P. J. Westgate, M. R. Ladisch, Air drying using corn grits as the sorbent in a pressure swing adsorber, AIChE J. 39 (1993) 720.
【132】C. Colella, M. Pansini, F. Alfani, M. Cantarella, A. Gallifuoco, Selective Water Adsorption from Aqueous Ethanol- Containing Vapours by Phillipsite-Rich Volcanic Tuffs, Microporous Mater.3 (1994) 219.
【133】K. E. Beery,M. R. Ladisch , Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents, Ind. Eng. Chem. Res. 40 (2001) 2112.
【134】M. Nomura, T. Yamaguchi, S. Nakao, Ethanol-water transport through silicalite membranes, J Memb Sci, 144(1998) 161
【135】G. F. Fanta, R. C. Burr, W. L. Orton, W. M. Doane, Liquid-Phase Dehydration of Aqueous Ethanol-Gasoline Mixtures, Science. 210 (1980) 646.
【136】S. Smitha, P. Shajesh, S. Rajesh Kumar, P. K. Pillai, K.G.K. Warrier, Effect of aging temperature on the porosity characteristics of subcritically dried silica aerogels (Citations: 3), J. Porous Mater. 14 (2007) 1.
【137】S. A. ASHEH, F. BANAT , N. AL-LAGTAH, Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents, Chem. Eng. Res. Des.82 (2004) 855.
【138】 P, Y. Mabboux, K. K. Gleason, Chemical Bonding Structure of Low Dielectric Constant Si:O:C:H Films Characterized by Solid-State NMR, Journal of The Electrochemical Society, 152(2005)F7
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code