Responsive image
博碩士論文 etd-0803112-184351 詳細資訊
Title page for etd-0803112-184351
論文名稱
Title
具光聚合能力之二氧化矽用於光學儲存的合成、微觀結構、與繞射效率
Synthesis, Microstructure, and Diffraction Efficiency of Photopolymerizable Silica for Optical Storage
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-08-03
關鍵字
Keywords
溶膠凝膠反應、光柵、光學儲存、繞射效率
optical storage, sol-gel process, diffraction efficiency, grating
統計
Statistics
本論文已被瀏覽 5681 次,被下載 335
The thesis/dissertation has been browsed 5681 times, has been downloaded 335 times.
中文摘要
本研究即以溶膠凝膠法製備有機無機混成材料,使用主要的成分為甲基丙烯酸丙酯三甲氧基矽烷(MPTS),同時兼具無機的水解縮合產生的網狀結構基材部份與有機的光聚合部分,減少分相的產生,並添加四乙氧基矽烷(TEOS),來強化玻璃基材,並期望用單一步驟的製程來製作試片。製程中嘗試了三種塗覆方法分別為旋轉塗覆、刮刀塗覆與封閉式模具,經由試片厚度控制,表面平整度兩個因素決定以刮刀塗覆作為製程的塗覆方式。
結果發現光起始劑添加量為1 wt%,可以得到相對較佳之繞射效率,因而採用此添加量進行性質分析。本實驗所運用之成分所製作出之試片沒有龜裂的問題,藉由穿透率照光反應後的增加,可以證明所添加之光起始劑有分解為自由基,並使單體開碳雙鍵產生聚合反應,運用傅利葉轉換紅外線光譜儀所計算出碳雙鍵轉換率最高可達57.51%;藉由光學顯微鏡可以在試片表面可以觀察到週期性的光柵結構,並由光功率儀的量測得到繞射效率,最高的繞射效率48.21 %可以由純MPTS所製作之試片得到;藉由氮氣吸脫附曲線可以量測到隨著MPTS添加量增加,孔洞大小會增加,與視密度下降之結果相符;所變化的成分當中純MPTS所製作之試片孔洞最大、密度最小結構最鬆散,當照光聚合時單體較易牽引矽結構移動,可以形成較完整之光柵結構,因而可以得到相對較高之繞射效率。而
繞射效率會由於試片之平整度、厚度、單體碳雙鍵轉換率、單體的自由度、單體添加量與光起始劑添加量所影響,本實驗所使用之MPTS其單體與矽結構的連接降低了相分離的產生,但其同時也限制了單體的自由度與反應性,TEOS的添加可以使材料更緻密,但卻也會稀釋單體使得繞射效率下降。
Abstract
A series of photopolymerizable silica for optical storage has been prepared using sol-gel process in this study. The inorganic-organic hybrid materials were based on methacroloxy-propyl-trimethoxysilane (MPTS) and tetraethylorthosilicate (TEOS). Thin films of the hybrids were prepared using spin coating, knife coating, and the closed-mold methods, while the knife coating showing better film flatness and controlled film thickness.
Results indicate crack-free polymerizable silica can be obtained using a recipe with 1 wt% photoinitiator. Samples after irradiation shows increased transmittance, suggesting that photopolymerization did take place with the aid of photoinitiators. Spectroscopic study from FTIR indicates C=C conversion in the acrylic part of MPTS reaches 57.51%. The grating period is observed by the optical microscopy. The maximum diffraction efficiency is 48.21%, as obtained from the sample of pure MPTS. From BET measurements, the pore size of the polymerizable silica increases with the increasing amount of MPTS, consistent with the results from measurements of apparent density. Factors affecting the diffraction efficiency are analyzed; these include sample flatness, sample thickness, the conversion of monomer, and concentration of the photoinitiator. Formation mechanism of the periodic grating is proposed based on this study. Addition of MPTS can greatly alleviate problem of phase separation; yet, movement acrylic segment in MPTS is severely limited. On the other hand, samples with more TEOS tend to be densified more with decreased diffraction efficiency
目次 Table of Contents
目錄
圖目錄
表目錄
第一章 緒論.………………………………………………………………………….1
1.1 前言………………………………………………… .……………………… 1
1.2 研究動機…………………………………………………………………….. 2
第二章 理論基礎與文獻回顧…………………………………………………….… 3
2.1全像術簡介.......………………………………………………………………3
2.2全像儲存材料…………….…………………………………………………...3
2.2.1鹵化銀敏化明膠……………………….……………………………… 4
2.2.2重鉻酸鹽明膠.………………………………………………………….4
2.2.3感光高分子.....…………………………………………….…………….4
2.3光聚合成分要素…….………………………………………………………...5
2.4光聚合原理…….……………………………………………………….……..5
2.5 繞射效率......………………………………………………………………….6
2.6 溶膠凝膠法簡介…….………………………………………………………..7
2.7 影響溶膠凝膠反應之因素..……..…………………………………………...8
2.7.1 水含量的影響…….…………………………………………………….8
2.7.2 pH值的影響…….……………………………………………………11
2.7.3 溶劑的影響…….……………………………………………………...13
2.7.4 前驅物的效應…….…………………………………………………...14
2.8 減緩溶膠凝膠法製備塊材龜裂之方法……..……………...………………14
2.9 溶膠凝膠法之優缺點……..……………...…………………………………15
2.10 製備有機無機混成材料之方法……..……………...……………………..15
v
第三章 實驗步驟…………………………………………………………………...17
3.1 實驗藥品……………………………………………………………………18
3.2 實驗儀器…………………………………………………………………….18
3.3 實驗流程…………………………………………………………………….20
3.3.1 試片製程………………………………………………………………20
3.3.2 標準誤差之算法………………………………………………………22
3.3.3 光學實驗………………………………………………………………23
第四章 結果與討論…………………………………………………………………24
4.1 不同製程之結果…………………………………………………………….24
4.1.1刮刀塗覆…..…………………………………………………………...24
4.1.2 旋轉塗覆...…………………………………………………………….24
4.1.3 封閉式模具.…………..………………………………………….……25
4.2 光起始劑之添加量………………………………………………….………26
4.2.1 光起始劑對光學性質之影響……………………………….………...27
4.3 系統之性質分析……………………………………………………….……30
4.3.1繞射效率與時間之關係……………………………………….………30
4.3.2 IR光譜分析…………………………………………………………....31
4.3.3 Raman光譜分析………………………………………………….........39
4.3.4 OM圖像………………………………………………………………..41
4.3.5 BET分析..……………………………………………………………..46
4.3.6 視密度…..……………………………………………………………..49
4.3.7 示意圖…. ……………………………………………………………..49
第五章 結論 ………………………………………………………………………..51
第六章 建議未來工作 ……………………………………………………………..53
參考文獻 ………………………………………………………………………..54
參考文獻 References
Reference
1. D. Gabor, G.W. Stroke, U.S. Patents, 785, 279 (1963).
2. Van Heerden, Appl. Opt., 2, 393 (1963).
3. W.R. Graver, J.W. Gladden, Appl. Opt., 19, 1529 (1980).
4. T.A. Shankoff , Appl. Opt., 7, 2101 (1968).
5. J.R. Lawrence, Int. J. Light and Elec.Opt., 112, 449 (2001).
6. K. J. Dong, and B. B. Soo, Acc. Chem. Res. ,40 ,903 (2007).
7. J. J. Eblemen, Amm, 57, 331(1846).
8. R. Ray, J. A. Ceram, Soc, 52, 344 (1969).
9. H. Dislich, Clastechn. Ber, 44,1 (1971). 10. S. Wang, Z. Ahmad, J.E. Mark. , Chem Mater., 6, 943 (1994).
11. T. Saegusa, Y. Chujo, J Macromol Sci ,27, 1603(1990).
12. C.J.Brinker, G.W.Scherer, “Sol Gel Science”, Academic press, Boston (1990).
13. B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York, (1962).
14.C. J. T. Landry, B. K. Coltrain, J.A. Wesson, N. Zumbulyadis and J. L. Lippert, polymer, 33, 1496 (1992).
15.C. J. T. Landry, B. K. Coltrain and B. K. Brady, Polymer, 33, 1486(1992).
16. I. M. M. Salvado, J. S. Sousa, F. M. A. Margaca, and J. Teixeira, Physica B, 276,
388 (2000).
17. L. Guo, J. H. Lee, and G. Beaucage, J. Non-Cryst. Solid, 243, 61 (1999).
18. D. Donescu , M. Teodorescu, S. Serban, L. Fusulan, and C. Petcu, Eur. Polym. J.l,
35, 1679 (1999).
19. R.A. Asink, and B. D. Kay, J. Non-Cryst.Solids, 99, 359 (1998).
55
20. R. Winter, J. B. Chan, R. Frattini, and J. Jonas, J. Non-Cryst. Solids, 105,33
(1988).
21. R. K. Iler, “The Chemistry of Silica” , Wiley, (1979).
22. H. Schmidt, J. Non-Cryst. Solids, 73, 681 (1985).
23. B. M. Novak, and C. Davies, Macromol., 24, 5181(1991).
24. B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak, and J. E. Mcgrath,
Macromol., 24, 3449 (1991).
25. J. E. Mark, C. Y. Jiang, and M. Y. Tang, Macromol., 17, 2613 (1984).
26. J. E. Mark, and C. C. Sun, Polymer, 30, 104 (1989).
27. M. Feuillade, C. C. Barghorn, OSA/PEMD (2005).
28. C. C. Barghorn, RadTech Europe (2005).
29. M. Feuillade, C. C. Barghorn, Chem. Phys. Lett., 398,151 (2004)
30. S. Jeong, J. Moon, J.Non-Cryst. Solids,351,353 (2005)
31. D. D. Vazoglou, V. E. Vamvakas, Micro. Reliability, 39,385 (1999)
32. T. Monde, H. Fukube, F. Nemoto, J. Non-Crys. Solids, 246, 54 (1999)
33. R. Gvishi, J. Sol-Gel Sci Technol, 50, 241 (2009)
34. G. Rizzo, P. Barila, S. Galvagno, J. Sol-Gel Sci Technol, 26,1017 (2003)
35. W.X. Que, X. Yao, W.G. Liu, Appl. Phys. 91, 539 (2008)
36. Y. Bautista, M. P. Gornez, Prog. in Org. Coat., 70, 358 (2011)
37. S. Costacurta, L. Malfatti, J. Sol-Gel Sci Technol,44,64 (2007)
38. H.J. Jiang , Opt. Commun., 185,19 (2000)
39. K. S. W. Sing, D. H. Everett, Pure & Appl. Chem., 4,603 (1985)
40. K.S. W. Sing, Pure & Appl. Chem., 54,2201 (1982)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code