Responsive image
博碩士論文 etd-0803113-102053 詳細資訊
Title page for etd-0803113-102053
論文名稱
Title
嵌入過渡金屬氧化物奈米粒子的二氧化矽基板:磁性與介電性研究
Transitional metal oxide nanoparticle embedded in SiO2 glass matrix: magnetic and dielectric study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-02
繳交日期
Date of Submission
2013-09-03
關鍵字
Keywords
介電係數、鐵電相變、磁介電效應、氧化鐵奈米粒子、氧化銅奈米粒子、擴散相變
diffuse phase transition, magnetodielectric, dielectric, ferroelectric transition, transitional metal oxide nanoparticles
統計
Statistics
本論文已被瀏覽 5702 次,被下載 861
The thesis/dissertation has been browsed 5702 times, has been downloaded 861 times.
中文摘要
我們透過溶膠-凝膠法,成功地在二氧化矽基板中嵌入過渡金屬氧化物奈米粒子,其中嵌入濃度為0.5莫耳%、燒結溫度在700 °C~1150 °C之間,奈米粒子尺寸隨著退火溫度越高而越大。首先是氧化鐵系統,從介電係數的研究中觀察到在室溫區有一個巨大且寬廣的峰值(擴散相變),研判是由於熱活化氧空缺效應造成的,並且在低溫區(接近65 K)發現有一個類似鐵電性的行為。從極化率的研究中也在65 K附近發現有一個相變點。感興趣的是,我們從非晶態的材料中發現了多鐵性的現象。另一方面,從磁電耦合的研究中,系統顯示出負的磁介電效應,研判是由磁場改變氧化鐵奈米粒子的電阻造成的的磁阻效應。不同尺寸磁性奈米粒子的特性,則分別透過各種實驗來鑑定,如:X光繞射儀、穿透式電子顯微鏡、X光吸收光譜作定性及定量分析。再來是氧化銅系統,從磁性與介電性的研究中發現其相變溫度都在250 K附近。我們推測這個現象的成因是由於氧化銅的多鐵性現象造成的,最後從磁電耦合的研究中,可得知此系統也顯示出負的磁介電效應。
Abstract
Transitional metal oxide nanoparticles (doping 0.5 mole %) embedded in a silica glass using the sol-gel method with different annealing temperatures. For iron-oxide nanoparticles system. An interesting colossal enhancement of dielectric constant is observed around room temperature with diffuse phase transition due to the thermally activated oxygen vacancies. In addition, there is a feature observed near 65 K due to ferroelectric effect. The magnetodielectric effect observed in the glass composite is considered to be affected by magnetoresistance changes. For polarization study, we observed a transition temperature near 65 K. It is interesting to observe multiferroic phenomena in amorphous material. The characteristics of nano-magnetic iron-oxide particles were determined respectively with various techniques, such as XRD, TEM, and XANES. For cupric-oxide nanoparticles system. There is a coexistent feature observed near 250 K from magnetic and dielectric study. From magnetodielectric study, we observed this system shows a negative magnetodielectric effect.
目次 Table of Contents
目錄
Abstract I
論文摘要 II
目錄 III
圖目錄 VI
第一章: 簡介 1
1.1 前言 1
1.2 多鐵性材料 3
1.2.1 多鐵性材料 類型一: 磁鐵礦(Fe3O4) 4
1.2.2 多鐵性材料 類型二: 氧化銅(CuO) 5
1.3 過渡金屬氧化物 5
1.4 研究動機 6
第二章: 實驗介紹 7
2.1 樣品製備 7
2.1.1 燒結過程 9
2.2 XRD 繞射儀 10
2.3 穿透式電子顯微鏡(TEM) 12
2.4 超導量子干涉儀 14
2.5 介電性測量 17
2.6 X光吸收光譜(XAS)測量 19
第三章: 結果與討論 20
3.1 氧化鐵系統 20
3.1.1 樣品特性 (XRD & TEM) 20
3.1.2 磁化強度對溫度的關係圖 23
3.1.3 磁滯曲線 25
3.1.4交流磁化率 27
3.1.5 X光吸收近邊緣結構 29
3.1.6 介電係數特性 31
3.1.7 介電係數特性 (尺寸效應) 34
3.1.8 磁介電效應 38
3.1.9 阻抗等效電路分析 39
3.1.10 延伸X光吸收近邊緣細微結構光譜 41
3.2 氧化銅系統 42
3.2.1 樣品特性 (XRD) 42
3.2.2 介電係數特性 43
3.2.3 磁化強度與溫度的關係圖 45
3.2.4 介電係數特性 (尺寸效應) 47
第四章: 結論 48
參考文獻 50
參考文獻 References
[1] W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials”, Nature 442, 759 (2006).
[2] J. F. Scott, “Applications of modern ferroelectrics”, Science 315, 954 (2007).
[3] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO3-CoFe2O4”, Science 303, 661 (2004).
[4] M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon, and C. Fleta, “Magnetoelectric coupling in ɛ-Fe2O3 nanoparticles”, Nanotechnology 17, 687 (2006).
[5] D. S. Rana, I. Kawayama, K. Mavani, K. Takahashi, H. Murakami, and M. Tonouchi, “Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3”, Adv. Mater. 21, 2881 (2009).
[6] W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N. D. Mathur, “Comment on epitaxial BiFeO3 multiferroic thin film heterostructures”, Science 307, 1203 (2005).
[7] M. Ziese, P. D. Esquinazi, D. Pantel, M. Alexe, N. M. Nemes, and M. Garcia-Hernandez, “Magnetite (Fe3O4): a new variant of relaxor multiferroic ?”, J. Phys.: Condens. Matter 24, 086007 (2012).
[8] J. Brink and D. Khomskii, “Multiferroicity due to charge ordering”, J. Phys.: Condens. Matter 20, 434217 (2008).
[9] C. C. Chang, L. Zhao, and M. K. Wu, “Magnetodielectric study in SiO2-coated Fe3O4 nanoparticle compacts”, J. Appl. Phys. 108, 094105 (2010).
[10] S. Sarkar, P. K. Jana, B. K. Chaudhuri, and H. Sakata, “Copper (II) oxide as a giant dielectric material”, Appl. Phys. Lett. 89, 212905 (2006).
[11] X. G. Zheng, Y. Sakurai, Y. Okayama, T. Q. Yang, L. Y. Zhang, X. Yao, K. Nonaka, and C. N. Xu, “Dielectric measurement to probe electron ordering and electron-spin interaction”, J. Appl. Phys. 92, 2703 (2002).
[12] R. S. Bhalerao-Panajkar, M. M. Shirolkar, R. Dasd, T. Maity, P. Poddar, and S. K. Kulkarni, “Investigations of magnetic and dielectric properties of cupric oxide nanoparticles”, Solid State Communi. 151, 55–60 (2011).
[13] E. V. Charnaya, M. K. Lee, C. Tien, V. N. Pak, D. V. Formus, A. L. Pirozerskii, A. I. Nedbai, E. V. Ubyivovk, S. V. Baryshnikov, and L. J. Chang, “Magnetic and dielectric studies of multiferroic CuO nanoparticles confined to porous glass”, J. Magn. Magn. Mater. 324, 2921–2925 (2012).
[14] M. Li, A. Feteira, and D. C. Sinclair, “Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: A case study of CuO ceramics”, J. Appl. Phys. 105, 114109 (2009).
[15] T. Putjuso, P. Manyum, R. Yimnirun, T. Yamwong, and S. Maensiri, “Fabrication of nanocrystalline CuO powder and giant dielectric properties of its ceramic”, 3rd International Nanoelectronics Conference , 1102-1103 (2010).
[16] J. W. Chen and G. N. Rao, “CuO nanoparticles as a room temperature dilute magnetic giant dielectric material”, IEEE Trans. Mag. 47, 3772-3775 (2011).
[17] G. N. Rao, Y. D. Yao, and J. W. Chen, “Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing”, J. Appl. Phys. 105, 093901 (2009).
[18] T. Bonaedy, Y. S. Koo, K. D. Sung, and J. H. Jung, “Resistive magnetodielectric property of polycrystalline γ-Fe2O3”, Appl. Phys. Lett. 91, 132901 (2007).
[19] W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetodielectric materials”, Nature 442, 17 (2006).
[20] D. Khomskii, “Classifying multiferroics: Mechanisms and effects”, Physics 2, 20 (2009).
[21] N. A. Spaldin and M. Fiebig, “The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
[22] F. Y. Ran, Y. Tsunemaru, T. Hasegawa, Y. Takeichi, A. Harasawa, K. Yaji, S. Kim, and A. Kakizaki, “Angle-resolved photoemission of Fe3O4 (0 0 1) films across Verwey transition”, J. Phys. D: Appl. Phys. 45, 275002 (2012).
[23] S. K. Banerjee and B. M. Moskowitz, “Ferrimagnetic properties of magnetite, in magnetite biomineralization and magnetoreception in organisms: A new magnetism”, Plenum Publishing Corporation, 17-41 (1985).
[24] S. C. Chung, C. I. Chen, P. C. Tseng, H. F. Lin, T. E. Dann, Y. F. Song, L. R. Huang, C. C. Chen, J. M. Chuang, K. L. Tsang, and C. N. Chang , “Soft X-ray spectroscopy beamline: 6 m high energy spherical grating monochromator beamline at SRRC: Optical design and first performance tests”, Rev. Sci. Instrum. 66, 1655 (1995).
[25] C. Cannas, G. Concas, D. Gatteschi, A. Falqui, A. Musinu, G. Piccaluga, C. Sangregorio, and G. Spano, “Superparamagnetic behaviour of nanoparticles dispersed in a γ-Fe2O3 silica matrix”, Phys. Chem. Chem. Phys. 3, 832 (2001).
[26] D. V. Dimitrov, G. C. Hadjipanayis, V. Papaefthymiou, and A. Simopoulos, “Surface-induced magnetism in alpha-Fe2O3/Ag multilayers”, J. Magn. Magn. Mater. 188, 8 (1998).
[27] Néel, “Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites”, ”Ann. Geophys. 5, 99 (1949).
[28] J. A. Mydosh, “Spin glasses: An experimental introduction”, Nature (London) (1993).
[29] D. A. Pejakovic, J. L. Manson, J. S. Miller, and A. J. Epstein, “Photoinduced magnetism, dynamics, and cluster glass behavior of a molecule-based magnet”, Phys. Rev. Lett. 85, 1994 (2000).
[30] G. F. Goya and V. Sagredo, “Spin-glass ordering in Zn1-xMnxIn2Te4 diluted magnetic semiconductor”, Phys. Rev. B 64, 235208 (2001).
[31] I. Rivera, Ashok Kumar, N. Ortega, R.S. Katiyar, and Sergey Lushnikovb, “Divide line between relaxor, diffused ferroelectric, ferroelectric and dielectric”, Solid State Communi. 149, 172 (2009)
[32] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticle embedded in a SiO2 glass matrix”, Phys. Rev. B 82, 104107 (2010)
[33] S. Mukherjee, C. H. Chen, C. C. Chou, and H. D. Yang, “Anomalous dielectric behavior of Eu2O3:SiO2 glass composite system”, Euro. Phys. Lett. 92, 57010 (2010)
[34] S. Mukherjee, Y. H. Lin, T. H. Kao, C. C. Chou, and H. D. Yang, “Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix”, J. Appl. Phys. 111, 064103 (2012)
[35] 張傑浩,Magnetodielectric study on double perovskite Pr2CoMnO6,中山大學碩士論文 (2012)
[36] 葉晉嘉,The study of magnetodielectric behaviors in spin frustrated Cu2Te2O5X2 (X=Cl , Br) compounds,中山大學碩士論文 (2012)
[37] 蕭凱文,Magnetodielectric behavior of the quasi-two-dimensional triangular antiferro-magnet NiGa2S4,中山大學碩士論文 (2011)
[38] 金宜彬,The study of magnetodielectric behaviors in frustrated Cu2Te2O5Br2 compound,中山大學碩士論文 (2011)
[39] 周志杰,Multiple magnetic transitions and multiferroics in BiMnO3 and Co3TeO6,中山大學博士論文 (2012)
[40] 陳慶軒,Studies of magnetic and dielectric properties on Eu2O3 nanoparticles embedded in silica matrix,中山大學碩士論文 (2010)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code