Responsive image
博碩士論文 etd-0803113-161149 詳細資訊
Title page for etd-0803113-161149
論文名稱
Title
於資料相關性疊加技術中繼架構下對於頻譜分享之研究
Investigation on DDST relaying scheme for spectrum sharing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-26
繳交日期
Date of Submission
2013-09-03
關鍵字
Keywords
資料相關性疊加技術、單載波頻域等化、合作式網路、感知無線電、頻譜分享
Spectrum sharing, Cognitive radio, Cooperative network
統計
Statistics
本論文已被瀏覽 5661 次,被下載 147
The thesis/dissertation has been browsed 5661 times, has been downloaded 147 times.
中文摘要
在這篇論文中,我們提出了一個含有感知無線電(Cognitive Radio)技術的放大前送(Amplify-and-Forward)合作式(Cooperative)單載波頻域等化(Single Carrier-Frequency Domain Equalizer, SC-FDE)系統,除了能改善主用戶(Primary User)的效能外,亦能提供次用戶(Secondary User)傳送自身的資料。
為了達到此目的,我們運用了資料相關性疊加技術(Data-Dependent Superimposed Training)。在原本的方法中,當訊號透過SC-FDE系統在時域上傳輸時,DDST能使其中一部份對應的頻域訊號被移除,且加入領航訊號(Pilot)。然而,在我們提出的方法中,次用戶在中繼端接收到主用戶的資料後,先放大主用戶的資料,接著使用DDST移除部分的子載波來加入次用戶的資料。最後將這整個訊號傳送至主用戶的目的端。在主用戶的目的端,我們會將接收到的訊號做適當的結合,使其在頻域上有最大的訊號雜訊比(Signal to Noise Ratio, SNR)。同時,我們也分析了主用戶訊號的訊號對干擾雜訊比(Signal to Interference Plus Noise Ratio)及位元錯誤率(Bit Error Rate)。利用分析結果,當主用戶所需達到的錯誤率門檻給定時,能決定分享給次用戶使用的載波個數。
模擬結果顯示我們提出的方法會比含有感知無線電技術的合作式正交分頻多工(Orthogonal Frequency Division Multiplexing)系統更適合運用在頻譜分享的技術上。
Abstract
In this thesis, an amplify-and-forward cooperative single carrier-frequency domain equalizer (SC-FDE) system with the cognitive radio technology is proposed to improve the performance of the primary user and let the secondary user can transmit its information. To achieve this purpose, the data dependent superimposed training (DDST) scheme is employed. For the original DDST scheme, the data are transmitted in the time domain by SC-FDE and a part of the corresponding frequency-domain signal is discarded to insert pilots. In the proposed approach, after the secondary user receives the primary user’s data, it firstly amplifies the primary user’s data. Following, the DDST scheme is utilized to discard a part of subcarriers to insert the secondary user’s data. Finally, the overall signals are transmit to the primary user’s destination. At the primary user’s destination, it combines the signals from the primary user and the secondary user by maximizing the signal to noise ratio in the frequency domain. In addition, the signal to interference plus noise ratio and the bit error rate (BER) of the primary user is analyzed. Therefore, if the BER of the primary user is given, the number of subcarrier sharing to the secondary user is determined. From simulation results, the proposed approach is more suitable for spectrum sharing purpose than the cooperative orthogonal frequency division multiplexing system with the cognitive radio technology.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
第一章 導論 1
1.1 研究背景 2
1.2 研究動機 2
1.3 論文架構 3
第二章 系統介紹 4
2.1 感知無線電 4
2.2 合作式通訊網路 5
2.3 傳統SC-FDE系統 7
2.4 資料相關性疊加架構 7
第三章 頻譜分享 12
3.1 傳統頻譜分享 12
3.2 OFDM系統下的合作式頻譜分享 13
第四章 SC-FDE系統下的合作式頻譜分享 16
4.1 SC-FDE系統合作式頻譜分享之架構 16
4.2 接收端設計 19
4.2-1 合作的N-K個子載波 20
4.2-2 未合作的K個子載波 24
第五章 效能分析 25
5.1訊號 SINR推導 25
5.2 錯誤率分析 26
第六章 模擬分析與討論 29
第七章 結論 36
參考文獻 38
中英對照表 43
縮寫對照表 47
參考文獻 References
[1] IEEE Standard for WirelessMAN: Advanced Air Interface for Broadband Wireless Access Systems, IEEE P802.16.1/D6, Apr. 2012.
[2] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
[3] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
[4] A. Jovicic and P. Viswanath, “Cognitive radio: an information-theoretic perspective,” IEEE Trans. Inf. Theory., vol. 55, no. 9, pp. 3945-3958, Sep. 2009.
[5] J. M. Peha, “Sharing spectrum through spectrum policy reform and cognitive radio,” Proc. IEEE, vol. 97, no. 4, pp. 708-719, Apr. 2009.
[6] R. A. Tannious and A. Nosratinia, “Cognitive radio protocols based on exploiting hybrid ARQ retransmissions,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2833-2841, Sep. 2010.
[7] A. Pandharipande and C. K. Ho, “Stochastic spectrum pool reassignment for cognitive relay systems,” in Proc. IEEE WCNC, Las Vegas, Apr. 2008, pp. 588-592.
[8] X. Kang, Y.-C. Liang, A. Nallanathan, H. K. Garg, and R. Zhang, “Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 940-950, Feb. 2009.
[9] A. Ghaesmi and E. S. Sousa, “Fundamental limits of spectrum-sharing in fading environments,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 649-657, Feb. 2007.
[10] FCC, “Spectrum policy task force report,”ET Docket No. 02-155, 2002.
[11] W. D. Lu, Y. Gong, S. H. Ting, X. L. Wu and N. T. Zhang, “Cooperative OFDM relaying for opportunistic spectrum sharing: protocol design and resource allocation,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2126-2135, Jun. 2012.
[12] I. Krikidis, J. N. Laneman, J. S. Thompson, and S. Mclaughlin, “Protocol design and throughput analysis for multi-user cognitive cooperative systems,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4740-4751, Sep. 2009.
[13] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio-part I: two user networks,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2204-2213, Jun. 2007.

[14] H. Ding, J. Ge, D. B. da Costa, and Z. Jiang, “Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 457-472, Feb. 2011.
[15] L. Deneire, B. Gyselinckx, and M. Engels, “Training sequence versus cyclic prefix—a new look on signal carrier communication,” IEEE Commun. Lett., vol. 5, no. 7, pp. 292-294, July 2001.
[16] L. Li, X. Zhou, H. Xu, G. Y. Li, D. Wang, and A. Soong, “Simplified relay selection and power allocation in cooperative cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 33-36, Jan. 2011.
[17] K. J. Kim and T. A. Tsiftsis, “On the performance of cyclic prefix-based single-carrier cooperative diversity systems with best relay selection,” IEEE Trans. Commun. vol. 10, no. 4, pp. 1269-1279, Apr. 2011.
[18] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[19] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161–1166, Mar. 2008.

[20] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power reduction of OFDM signals without side information,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2006–2013, Sep. 2005.
[21] C.-P. Li and W.-W. Hu, “Pilot-aided ICI self-cancellation scheme for OFDM systems,” IEEE Trans. Commun., vol. 89, no. 3, pp. 955-958, Mar. 2006.
[22] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[23] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 58–66, Apr. 2002.
[24] N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter,” IEEE Trans. Commun., vol. 50, no. 6, pp. 947-955, Jun. 2002.
[25] A. Gusmao, R. Dinis, and N. Esteves, “On frequency-domain equalization and diversity combining for broadband wireless communications,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1029-1033, July 2003.


[26] K. Takeda, H. Tomeba, and F. Adachi, “Joint Tomlinson-Harashima precoding and frequency-domain equalization for broadband single-carrier transmission,” IEICE Trans. Commun., vol. E91-B, no. 1, pp. 258-266, Jan. 2008.
[27] K. Takeda and F. Adachi, “Bit error rate analysis of DS-CDMA with joint frequency-domain equalization and antenna diversity combining,” IEICE Trans. Commun., vol. E87-B, no. 10, pp. 2991-3002, Oct. 2004.
[28] F. Adachi, T. Obara, and T. Yamamoto, “Capacity and BER performance considerations on single-carrier frequency-domain equalization,” in Proc. the 8th ICICS, Singapore, Dec. 2011, pp. 1-5.
[29] T. Whitworth, M. Ghogho, and D.C. McLernon, “Data identifiability for data-dependent superimposed training,” in Proc. IEEE ICC, Glasgow, UK, June 2007, pp. 2545-2550.
[30] F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Performance. UK, 2009: Cambridge University Press.
[31] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, 2008: McGraw-Hill.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code