Responsive image
博碩士論文 etd-0803114-160359 詳細資訊
Title page for etd-0803114-160359
論文名稱
Title
分子束磊晶成長鉍系(Bi2Se3, Bi2Te3)拓樸絕緣體 之超快動力學研究
Ultrafast Dynamic Study of MBE Growth Bi-Topological Insulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-09-04
關鍵字
Keywords
銻化鉍、同調聲子、硒化鉍、塊材態、表面態、激發-探測技術、谷間散射、拓樸絕緣體
Bulk state, Topological insulator, Surface state, Coherent phonon, Inter-valley scattering, Bi2Se3, Pump-probe technique, Bi2Te3
統計
Statistics
本論文已被瀏覽 5713 次,被下載 0
The thesis/dissertation has been browsed 5713 times, has been downloaded 0 times.
中文摘要
拓樸絕緣體因為它特殊的量子態近來已成為一個繼石墨烯之後之一重要領域,同時,因為它在兆赫波、自旋電子的應用潛力,近幾年來更是吸引大量的研究熱潮。鉍系拓樸絕緣體(Bi2Se3, Bi2Te3…)是早已存在且成長技術成熟的熱電材料,然而在其數奈米薄膜結構中,卻依然在元素結構和載子特性方面有著許多未知的特性。本篇論文中,我們利用超快激發-探測技術探討鉍系拓樸絕緣體薄膜的超快光電子學特性。首先,我們報導了Bi2Se3、Bi2Te3薄膜中谷間散射的行為,這是首次在可排除表面態貢獻下對塊材態的觀察;其次,我們研究了同調聲子在拓樸絕緣體的行為,首次觀察到過往文獻預期在小於特定厚度不會存在的同調聲子振盪,塊材態與表面態的競爭也經於吸收特性被報導;最後,透過數值分析結合量測結果,我們對同調聲子振盪生命期的可能機制做了相關的說明。
Abstract
Topological insulators have been attracted lots of attentions due to their potential in spintronics which is attributed to special surface state from strong spin orbital interaction. To date, plenty of researches about topological insulators have been reported. However, most investigations focus on physical properties of single crystals. As a result, studies in detail to topological insulator thin film, such as grown by molecular beam epitaxy (MBE), are very important problems and in an urgent need.
In this thesis, ultrafast dynamics of MBE growth Bi2Se3 and Bi2Te3 thin films with various thickness(3-15nm).
First, we report the transient reflectivity of Bi2Se3 and Bi2Te3 thin films using Optical pump Mid-infrared probe spectroscopy (OPMP) and Optical pump Optical probe spectroscopy (OPOP). By adjusting the wavelength of probe beam wavelength, different dynamics behaviors were observed. This is attribute to different contribution of surface state as various probe wavelength. The corresponding relaxation time(2~11ps) constants of bulk states are fulfilled with the reported values. Clear power dependent relaxation time, increasing from 2 to 11ps as increasing pump fluence from 1.52 to 12.13uJ/cm2, was observed and explained by inter-valley scattering effect of excited bulk state. This is first time for our best knowledge that we can investigate the dynamics of bulk state independently in topological insulators.
Additionally, we investigate the coherent phonon properties within the Bi2Se3 and Bi2Te3 films. Using Optical Pump Optical Probe Transmitted spectroscopy (OPOPT), the oscillation phenomenon were observed within the pump probe profile. This can be attribute to coherent phonon which has been discussed theoretically and predicted that the coherent phonon will be un-exist for topological insulator with thickness less than 20nm for Bi2Te3 and 40nm for Bi2Se3, respectively. Possible mechanism, thickness dependent coherent phonon life time and competition between bulk state and surface state are discussed as well.
目次 Table of Contents
論文審書............................i
致謝..............................iii
摘要..............................iv
英文摘要............................v
第一章 續論..........................1
1.1 前言...........................1
1.2 研究動機.........................2
1.3 論文架構.........................3
第二章 拓樸絕緣體與超快雷射激發-探測光譜系統..........4
2.1 拓樸絕緣體........................4
2.1.1. 拓樸絕緣體之概述.....................4
2.1.2. 拓樸絕緣體之能帶結構...................5
2.1.3. 三維拓樸絕緣體-硒化鉍、銻化鉍的之原子架構及能帶結構...9
2.1.4. 拓樸絕緣體的應用................... 13
2.2 超快雷射激發-探測光譜系統................15
2.2.1. 超快雷射激發-探測光譜系統原理............. 15
2.2.2. 自相關系統、脈衝寬度與系統解析度............. 19
2.2.3. 時間解析近紅外反射式、穿透式激發-探測光譜系統架構.....24
2.2.4. 時間解析反射式近紅外光激發-中紅外光探測光譜系統架構....28
第三章 薄膜拓樸絕緣體之反射式近紅外激發-中紅外探測光譜與傅立葉轉換
紅外光譜及其超快載子動力學研究.............. 31
3.1 薄膜拓樸絕緣體之反射式近紅外激發-中紅外探測系統(OPMP)光譜.31
3.1.1. 實驗樣品條件與參數.................... 31
3.1.2. 實驗結果與分析...................... 32
3.2 薄膜拓樸絕緣體之傅立葉轉換紅外光譜(FTIR).......... 39
3.2.1. 實驗儀器與架構...................... 39
3.2.2. 實驗結果與分析...................... 41
3.3 結論........................... 43
第四章 薄膜拓樸絕緣體之反射式近紅外激發-探測光譜及其超快載子動力學
研究............................47
4.1 薄膜拓樸絕緣體之反射式近紅外激發-探測系統(OPOPR)光譜... 47
4.1.1. 實驗樣品條件與參數.................... 47
4.1.2. 實驗結果與分析...................... 48
4.2 結論........................... 53
第五章 薄膜拓樸絕緣體之穿透式近紅外激發-探測光譜及其超快載子、聲子
動力學研究.........................55
5.1 薄膜拓樸絕緣體之穿透式近紅外激發-探測系統(OPOPT)光譜... 55
5.1.1. 實驗樣品條件與參數.................... 55
5.1.2. 實驗結果與分析...................... 56
5.2 薄膜拓樸絕緣體的聲子振盪行為............... 64
5.2.1. 拓樸絕緣體的聲子振盪行為................. 65
5.2.2. 由穿透式近紅外-激發探測光譜觀察薄膜拓樸絕緣體之聲子振盪行為
、種類及其頻率分析..................... 68
5.2.3. 薄膜結構內部之聲子特性分析................ 74
5.3 結論........................... 80
第六章 結論與未來展望.......................82
6.1 結論........................... 82
6.2 未來展望......................... 83
參考文獻............................. 84
參考文獻 References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science. 306, 666-669 (2004).
[2] A. K. Geimand and K. S. Novoselov, “The rise of graphene”, Nature Mat. 6, 183-191 (2007).
[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys.81, 109-162 (2009).
[4] J. E. Moore, “The birth of topological insulators”, Nature 464, 194-198 (2010).
[5] M. König, S. Wiedmann, C. Brüne, A Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S. C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells”, Science. 318, 766-770 (2007).
[6] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero and N. Gedik, “Control over topological insulator photocurrents with light polarization”, Nature Nano. 7, 96-100 (2012).
[7] C. W. Luo, H. J. Wang, S. A. Ku, H.-J. Chen, T. T. Yeh, J.-Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C.-M. Cheng, C.-H. Chen, K.-D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev and G. D. Gu, “Snapshots of Dirac Fermions near the Dirac Point in Topological Insulators”, Nano Lett., 13, 5797–5802 (2013).
[8] J. Zhang, Z. P. Peng, A. Soni, Y. Y. Zhao, Y. Xiong, B. Peng, J. B. Wang, M. S.
Dresselhaus and Q. H. Xiong, “Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets”, Nano Lett. 11, 2407–2414 (2011).
[9] C. X. Wang, X. G. Zhu, Louis Nilsson, J. Wen, G. A. Wang, X. Y. Shan, Q. Zhang,
S. L. Zhang, J. F. Jia and Q. K. Xue , “In situ Raman spectroscopy of topological
insulator Bi2Te3 films with varying thickness”, Nano Research, 6, 688–692
(2013).
[10] Y. S. Kim, M. Brahlek, N. Bansa, E. Edrey, Gary A. Kapilevich, K. Iida, M. Tanimura, Y. Horibe, S. W. Cheong and S. Oh, “Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3”, Phys. Rev. B 84, 073109 (2011).
[11] Y. G. Wang, L. A. Guo and X. F. Xu, “Origin of coherent phonons in Bi2Te3 excited by ultrafast laser pulses”, Phys. Rev. B 88, 064307 (2013).
[12] J. Qi, X. Chen, W. Yu, P. Cadden-Zimansky, D. Smirnov, N. H. Tolk, I.Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi 2 Se 3 crystals”, Appl. Phys. Lett. 97, 182102 (2010).
[13] N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3”, Phys. Rev. B 83, 235306 (2011).
[14] A. Q. Wu, X. F. Xu, and Rama Venkatasubramanian, “Ultrafast dynamics of photoexcited coherent phonon in Bi 2 Te 3 thin films”, Appl. Phys.Lett.92, 011108 (2008).
[15] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface”, Nature Phys., 5, 438-442 (2009).
[16] G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X Dai, Z. Fang and K. H. Wu, “Quintuple-layer epitaxy of thin films of topological insulator Bi2 Se3”, Appl. Phys. Lett. 95, 053114 (2009).
[17] J. Maassen and M. Lundstrom, “A computational study of the thermoelectric performance of ultrathin Bi2Te3 films”, Appl. Phys. Lett. 102, 093103 (2013).
[18] X. L. Qi and S. C. Zhang, “Topological insulators and superconductors”, Rev. Mod. Phys. 83, 1057-1110 (2011).
[19] Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal1, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, “Observation of a large-gap topological-
insulator class with a single Dirac cone on the surface”, Nature Phys. 5, 398-402 (2009).
[20] L. Fu, C. L. Kane and E. J. Mele, “Topological Insulators in Three Dimensions”, Phys. Rev. Lett. 98, 106803 (2007).
[21] Klaus von Klitzing, “The quantized Hall effect”, Rev. Mod. Phys. 58, 519-531 (1986).
[22] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438, 197-200 (2005).
[23] J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures”, Phys. Rev. B 75, 121306 (2007).
[24] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang,
D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain and Z. X. Shen, “Experimental Realization of a Three-Dimensional Topological Insulator Bi2Te3”, Science 325, 178-181 (2009).
[25] H. J. Noh, H. Koh, S. J. Oh, J. H. Park, H. D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu and Q. Li, “Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy”, Europhysics Lett. 81 57006 (2008).
[26] Y. H. Wang, D. Hsieh, D. Pilon, L. Fu, D. R. Gardner, Y. S. Lee and N. Gedik, “Observation of a Warped Helical Spin Texture in Bi2Se3 from Circular Dichroism Angle-Resolved Photoemission Spectroscopy”, Phys. Rev. Lett. 107, 207602 (2011).
[27] L. P. Sun, Z. Q. Lin, J. A. Peng, J. A. Weng, Y. Z. Huang and Z. Q. Luo, “Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and
Its Optical Absorption Properties” , Scientific Reports 4, 4794 (2014).
[28] H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers”, Laser Photonics Rev. 7, 77–83 (2013).
[29] C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber”, Appl. Phys. Lett. 101, 211106 (2012).
[30]羅志偉 “以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學” 國立交
通大學電子物理系,2003年10月。
[31]洪勝富、齊正中 “時間解析激發探測技術”,物理雙月刊,二十卷五期,1998
年10月。
[32] K. Sakai and M. Tani “Terahertz Optoelectronics” Berlin : Springer, 2005.
[33]丁濟民 “近場之雙光子吸收光致電流對二極體元件之量測” 國立交通大學光
電工程研究所 碩士論文,1996年6月。
[34]王函雋 “以光激發中紅外光譜研究拓樸絕緣體硒化鉍晶體之超快動力學” 國
立交通大學電子物理系 碩士論文,2012年8月。
[35] N. A. van Dantzig and P. C. M. Planken, “Time-resolved far-infrared reflectance of n-type GaAs”, Phys. Rev. B 59, 3 (1999).
[36] VERTEX 70 & 70v FT-IR Spectrometer manual (Bruker).
[37] D. Hsieh, F. Mahmood, J.W. McIver, D. R. Gardner, Y. S. Lee and N. Gedik, “Selective Probing of Photoinduced Charge and Spin Dynamics in the Bulk and Surface of a Topological Insulator”, Phys. Rev. Lett. 107, 077401 (2011).
[38] Y. D. Glinka, S. Babakiray, T. A. Johnson, A. D. Bristow, M. B. Holcomb and D. Lederman, “Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3”, Appl. Phys. Lett. 103, 151903 (2013).
[39] S.X. Zhang a, L. Yan , J. Qi , M. Zhuo , Y.-Q. Wang , R.P. Prasankumar , Q.X. Jia and S.T. Picraux, “Epitaxial thin films of topological insulator Bi2Te3 with two-dimensional weak anti-localization effect grown by pulsed laser deposition”,
Thin Solid Films 520, 6459–6462 (2012).
[40] N. Kamaraju, Sunil Kumar and A. K. Sood, “Temperature-dependent chirped coherent phonon dynamics in Bi2Te3 using high-intensity femtosecond laser pulses”, Europhysics Lett. 92, 47007 (2010).
[41] S. M. Li, H. A. Huang, W. L. Zhu, W. F. Wang, K. Chen, D. X. Yao, Y. Wang, T. S. Lai, Y. Q. Wu and F. X. Gan, “Femtosecond laser-induced crystallization of amorphous Sb2Te3 film and coherent phonon spectroscopy characterization and optical injection of electron spins”, J. Appl. Phys. 110, 053523 (2011).
[42] H. J. Chen, K. H. Wu, C. W. Luo, T. M. Uen, J. Y. Juang, J. Y. Lin, T. Kobayashi, H.-D. Yang, R. Sankar, F. C. Chou, H. Berger and J. M. Liu, “Phonon dynamics in CuxBi2Se3 (x=0, 0.1, 0.125) and Bi2Se2 crystals studied using femtosecond spectroscopy”, Appl. Phys. Lett. 101, 121912 (2012).
[43] L. Cheng, C. La-o-vorakiat, C. S. Tang, S. K. Nair, B. Xia, L. Wang, J. X. Zhu and E. E. M. Chia, “Temperature-dependent ultrafast carrier and phonon dynamics of topological insulator Bi1.5Sb0.5Te1.8Se1.2”, Appl. Phys. Lett. 104, 211906 (2014).
[44]曾國陞 “以飛秒光激發探測系統研究硒化鉍薄膜之超快動力學” 國立交通大
學電子物理系 碩士論文,2012年7月。
[45] I. Matsubara, S. Ebihara, T. Mishina and J. Nakahara, “Two coherent phonon modes at the metal-insulator transition of the spinel CuIr2S4 compound using femtosecond pump-probe spectroscopy”, Phys. Rev. B 79, 054110 (2009).
[46] S. Graf, H. Sigg, K. Ko¨hler and W. Ba ̈chtold, “Photon drag investigations of current relaxation processes in a two-dimensional electron gas”, Phys. Rev. B 62, 10301 (2000).
[47] C. Thomsen, H. T. Grahn, H. J. Maris and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses”, Phys. Rev. B 34, 4120-4138 (1986).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.97.248
論文開放下載的時間是 校外不公開

Your IP address is 3.145.97.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code