Responsive image
博碩士論文 etd-0803114-171905 詳細資訊
Title page for etd-0803114-171905
論文名稱
Title
結合土耕法及抽出處理法整治受石油碳氫化合物 污染之土壤及地下水
Application of landfarming and pump-and-treat system to remediate petroleum-hydrocarbon contaminated soils and groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-09-05
關鍵字
Keywords
抽出處理法、土壤及地下水污染、菌相分析、土耕法、總石油碳氫化合物
total petroleum hydrocarbon, microbial identification, soil and groundwater contamination, pump and treat, landfarming
統計
Statistics
本論文已被瀏覽 5681 次,被下載 0
The thesis/dissertation has been browsed 5681 times, has been downloaded 0 times.
中文摘要
本研究評估以土耕法(Landfarming)結合抽出處理法(Pump and Treat)整治加油站場址中受柴油污染之土壤及地下水。在土耕法試驗方面,由本場址內土壤物性分析得知土壤之總生菌數達2.09×106 CFU/g,顯示土壤之總生菌數量應可有效分解有機污染物;惟土壤中之含水率及氮磷濃度偏低,因此須進行適當調整與添加,方能提升土耕法之效益。由分子生物技術進行定序結果可知,場址內之柴油污染土壤皆具有可分解總石油碳氫化合物(Total petroleum hydrocarbon, TPH)之菌種,顯見生物處理-土耕法可作為本污染土壤之整治方案。在土耕法先導試驗發現控制組在持續翻堆操作下,使得揮發性有機污染物溢散至空氣中,造成TPH因物理揮發作用而降低約25%;各試驗組TPH生物降解率皆大於控制組25%。其中,又以堆肥組之TPH生物降解率最高(68%)。結果亦顯示,添加分解菌、污泥、堆肥組有顯著之TPH降解效率,殘留於土壤之TPH濃度值可於16天內降至管制標準(1,000 mg/kg)以下;在低TPH濃度(555 mg/kg)柴油污染土壤,可在短時間內經由翻土及添加膨鬆劑、有機質或菌群之方式,使TPH濃度經由物理揮發及生物分解作用而降低,生物處理-土耕法改善效率可達91%。因此,TPH可在短時間內經由翻土及添加膨鬆劑、有機質或菌群之方式使污染物濃度經由物理揮發、處於氧化態之環境及生物分解作用而降低。在地下水污染整治方面,於執行地下水污染之抽水處理前,污染區二口監測井之苯濃度分別為0.0561及0.162 mg/L,經抽水處理改善後,監測井之苯濃度分別降為0.00885及0.00172 mg/L(低於管制標準值之0.05 mg/L),因此結合污染土壤挖除及抽出處理法應可改善本場址地下水水質。
Abstract
In this study, landfarming and pump-and-treat system were combined to remediate diesel-oil contaminated groundwater and soils. Results from the soil analyses show that the total bacterial counts reached 2.09×106 CFU/g. This indicates that the indigenous bacteria were able to biodegrade the petroleum hydrocarbons in the soils. However, the total nitrogen, phosphorus, and water content were too low to meet the allowable levels of bioremediation. Thus, addition of water content and nutrients needs to be performed to improve the efficiency of landfarming. Results from the microbial diversity analyses show that the petroleum-hydrocarbon degrading bacteria existed in the soils. Thus, landfarming would be an optimal remedial option at this site. Approximately 25% loss of the soil petroleum hydrocarbons was due to the vaporization mechanism during the landfarming process. Up to 68% of the total petroleum hydrocarbon (TPH) removal was obtained in the test using compost as the nutrient and bacteria amendments. Results also show that the addition of petroleum-hydrocarbon degrading bacteria, sludge, and compost had significant TPH degrading rates. The soil TPH concentration dropped to below 1,000 mg/kg after 16 days of operation. Up to 91% of TPH removal could be obtained when bulking agent, organic amendments, and bacteria were added in soils during the soil agitation process. For groundwater remediation, the benzene concentrations in two wells reached 0.056 and 0.12 mg/L before the application of the pump-and-treat system. After the operation of the pump-and-treat system, benzene concentrations in the two wells dropped to below 0.0089 and 0.0017 mg/L, which were lower than the groundwater standard for benzene 0.05 mg/L. Results indicate that the application of landfarming and pump-and-treat system could effectively remediate the polluted soils and groundwater at the petroleum-hydrocarbon contaminated site.
目次 Table of Contents
審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vii
圖目錄 viiii
表目錄 ixx
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 加油站現況及油品污染現況 3
2.2 油品種類及性質 5
2.3 油品污染之途徑及分佈 6
2.4 土壤及地下水污染整治技術選取要點及介紹 8
2.4.1 土壤氣體抽除法(Soil Vapor Extraction) 12
2.4.2 空氣注入法(Air Sparging) 12
2.4.3 抽取處理法(Pump and Treatment) 13
2.4.4 蒸氣注入/氣提法(Steam Flushing/Stripping) 13
2.4.5 現地化學氧化法(In-Situ Chemical Oxidation, ISCO) 14
2.4.6 生物復育法(Bioremediation) 15
2.4.7 土耕法(Land Farming) 17
第三章 實驗設備與方法 20
3.1 研究項目及流程 20
3.2 土耕法先導試驗 25
vii
3.2.1 試驗目的 25
3.2.2 土壤基本性質分析 25
3.3 土耕法可行性評估 29
3.3.1 優勢菌及菌項分析 29
3.3.2 批次實驗 33
3.3.3 油品種類篩選分析 35
3.4 現場改善及整治工法 36
3.4.1 污染改善之施工作業 36
3.4.2 使用機具 55
第四章 結果與討論 57
4.1 本場址歷次調查結果 57
4.2 土耕法-生物復育法之前導試驗結果 59
4.3 土耕法-生物復育工程73
4.4 地下水改善作業成果 78
4.5 環境監測 83
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
參考文獻 88
參考文獻 References
行政院環境保護署,2012,101年土壤及地下水污染整治年報。
林威州,2010,加油站土壤及地下水污染整治工程實例探討,中興工程季刊.第106期.2010年1月.PP. 45-51, http://www.sinotech.org.tw/journal/.
吳春生,2002,以生物曝氣法整治受地下油槽洩露之石化系有機污染物模場研究, 國立中山大學環境工程研究所碩士論文, 高雄。
Admon, S., Green, M., Avnimelech, Y. (2001) Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Journal Bioremediation 5(3), 193-209.
Albergaria, J.T., Alvim-Ferraz, M.C.M., Delerue-Matos, C. (2012) Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. Journal of Environmental Management 104(15), 195-201.
Barathi, S., Vasudevan, N. (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescence isolated from a petroleum-contaminated soil. Environ. Int., 26: 413-416.
Chagas-Spinelli, A.C.O., Kato, M.T., Lima, E., Gavazza, S. (2012) Bioremediation of a tropical clay soil contaminated with diesel oil. Journal of Environmental Management 113, 510-516.
Chang, L.C., Chu, H.J., Hsiao, C.T. (2007) Optimal planning of a dynamic pump-treat-inject groundwater remediation system. Journal of Hydrology 342, 295-304.
Interstate Technology Regulatory Council (ITRC). (2005). Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. Interstate Technology and Regulatory Council, Washington, DC.
Kaplan, C.W., Kitts, C.L. (2003) Bacterial succession in petroleum land treatment unit. Applied Environmental Microbiology 70(3), 1777-1786.
Kempa T., Marschalko, M., Yilmaz, I., Lacková, E., Kubečka, K., Stalmachová, B., Bouchal, T., Bednárik, M., Drusa, M., Bendová, M. In-situ remediation of the contaminated soils in Ostrava city (Czech Republic) by steam curing/vapor, Engineering Geology, Volume 154, 28 February 2013, Pages 42-55.
Khan, S., Afzal, M., Iqbal, S., Khan, Q.M. (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90, 1317-1332.
Lin, T.C., Pan, P.T., Cheng, S.S. (2010) Ex situ bioremediation of oil-contaminated soil. Journal of Hazardous Materials 176(1-3), 27-34.
Liu, P.W.G., Chang, T.C., Chen, C.H., Wang, M.Z., Hsu, H.W. (2013) Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil. International Biodeterioration & Biodegradation 85, 661-670.
Mair, J., Schinner, F., Margesin, R. (2013) A feasibility study on the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site: Effects of temperature and biostimulation. Cold Regions Science and Technology 96, 122-128.
Marin, J.A., Hernandez, T., Garcia, C. (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environmental Research 98(2), 185-195.
Margesin, R., P. Fonteyne and B. Redl, 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and Basidiomycetous yeasts. Res. Microbiol., 156: 68-75.
Mikkonen, A., Hakala, K.P., Lappi, K., Kondo, E., Vaalama, A., Suominen, L., Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Environmental Pollution 162, 374-380.
Da Silva Junior, F.M.R., Silva, P.F., Guimaraes, F.S., De Almeida, K.A., Baisch, P.R.M., Muccillo-Baisch, A.L. (2014) Ecotoxicological tools for landfarming soil evaluation in a petrochemical complex area. Pedosphere 24(2), 280-284.
Nilsson, B., Tzovolou, D., Jeczalik, M., Kasela, T., Slack,W., Klint, K.E., Haeseler, F., Tsakiroglou, C.D. (2011) Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel. Journal of Environmental Management 92 (3) 695-707.
Okoh, A.l. (2002) Assessment of the potentials of some bacterial isolates for application in the bioremediation of petroleum hydrocarbon polluted soil. Ph.D. Thesis, Obafemi Awolowo University, lle-lfe, Nigeria.
Peltola, R., Salkinoja-Salonen, M., Pulkkinen, J., Koivunen, M., Turpeinen, A.R., Aarnio, T., Romantschuk, M., Nitrification in polluted soil fertilized with fast- and slow-releasing nitrogen: A case study at a refinery landfarming site. Environmental Pollution 143(2), 247-253.
Paudyn, K., Rutter, A., Rowe, R.K., Poland, J.S. (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Regions Science and Technology 53(1), 102-114.
Ruberto, L., Vazquez, S., Lobalbo, A., Cormack, W.M. (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct. Sci., 17: 47-56.
Soares, A.A., Albergaria, J.T., Domingues, V.F., Alvim-Ferraz, M.C., Delerue-Matos, M.C. (2010) Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere 80(8), 823-828.
US Environmental protection Agency, A citizen’s Guide to Bioremediation EPA 542-F-01-001(2001).
U.S. EPA, How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plane reviewers, EPA 510-R-04-002., 2004.
Vignola, R., Cova, U., Fabiani, F., Grillo, G., Molinari, M., Sbardellati, R., Sisto, R. (2008) Remediation of hydrocarbon contaminants in groundwater using specific zeolites in full-scale pump&treat and demonstrative Permeable barrier tests. Studies in Surface Science and Catalysis, 174, 573-576.
Zhuang, L., Gui, L., Gillham, R.W., Landis, R.C. (2014) Laboratory and pilot-scale bioremediation of Pentaerythritol Tetranitrate (PETN) contaminated soil. Journal of Hazardous Materials 264, 261-268.
Zouboulis, A.I., Moussas, P.A. (2011) Groundwater and Soil Pollution: Bioremediation, Reference Module in Earth Systems and Environmental Sciences, from Encyclopedia of Environmental Health, Pages 1037-1044, Current as of 10 December 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.221.110.87
論文開放下載的時間是 校外不公開

Your IP address is 54.221.110.87
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code