Responsive image
博碩士論文 etd-0803115-095752 詳細資訊
Title page for etd-0803115-095752
論文名稱
Title
分析人類口腔鱗狀細胞癌的長片段非編碼核糖核酸表現量及其臨床重要性
Long non-coding RNAs Expression Profiles in Human Oral Squamous Cell Carcinoma and Its Clinical Significances
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-30
繳交日期
Date of Submission
2015-09-07
關鍵字
Keywords
長片段非編碼核糖核酸、SOX21第一反義核糖核酸、甲基化、次世代定序、口腔癌
lncRNA, oral cancer, SOX21-AS1, next generation sequencing, methylation
統計
Statistics
本論文已被瀏覽 5721 次,被下載 426
The thesis/dissertation has been browsed 5721 times, has been downloaded 426 times.
中文摘要
長片段非編碼核糖核酸 (Long non-coding RNAs) 是長度約大於200個鹼基,不會轉譯出蛋白質的核糖核酸,但會參與人類癌症細胞上,可能參與細胞的生長、凋亡、轉移之功能。目前長片段非編碼核糖核酸在口腔癌的角色與機制仍未知。在本篇研究中,我們使用次世代定序法分析人類口腔鱗狀細胞癌 (Oral Squamous Cell Carcinoma) 組織和相應癌旁正常組織的轉錄體表達譜。根據次世代定序結果我們發現,有19個長片段非編碼核糖核酸在口腔鱗狀細胞癌中表現量上升(變化倍數大於2),20個長片段非編碼核糖核酸則表現下降(變化倍數小於-2),由於本實驗室主要專注在甲基化調控的基因,因此高度甲基化導致表現量下降的長片段非編碼核糖核酸將成為本研究的主軸,所以我們進一步分析20個低表現的長片段非編碼核糖核酸在口腔鱗狀細胞癌中的表現量,經即時聚合酶連鎖反應定量(qPCR)顯示ATP13A4-AS1、IL20RB-AS1、LINC00265、LINC00478、LINC00568、MAST4-AS1、MIR600HG以及SOX21-AS1皆在口腔鱗狀細胞癌組織相較於癌旁正常組織之表現明顯下降。進一步評估在臨床特徵上的意義顯示,LINC00265低表現與病理晚期(P value=0.013)以及較大尺寸的腫瘤有關(P value=0.006),其餘的並未顯示與臨床特徵有任何關聯性,而有趣的是存活曲線以及COX迴歸分析發現,SOX21-AS1 (SOX21第一反義核糖核酸) 低表現與較短的存活時間顯著相關(log rank p value = 0.016) (校正前死亡風險 0.19倍, 95%CI 0.04-0.86, P = 0.031),進一步多變向分析將細胞分化和病理分期校正後,仍具有統計上的差異(校正後死亡風險0.19倍, 95%CI 0.04-0.87, p=0.032)。而在這兩個與臨床有關連性的長片段非編碼核糖核酸中僅有SOX21-AS1在細胞株中會因去甲基藥劑處理而回復其表現量,同時我們也發現在臨床口腔鱗狀細胞癌檢體中,SOX21-AS1上游的DNA被偵測到甲基化的比例非常高(CpG1: 85位當中有65位, 76.5%; CpG2: 85位當中有52位, 61.2%; CpG3: 85位當中有49位, 57.6%),並且也發現SOX21-AS1甲基化在口腔鱗狀細胞癌中呈現較高的甲基化程度以及較差的細胞分化,這些數據顯示,高度甲基化可能導致SOX21-AS1在口腔鱗狀細胞癌中異常低表現,因此我們利用體外甲基化分析(in vitro methylation assay)進一步證實,SOX21-AS1的表現的確會因啟動子被甲基化而抑制,我們也利用生物資訊方式,總共有12個轉錄因子(AP2alpha, CEBPA, CEBPB, GATA-1, NF-1, NF-kB, NR3C1, RelA, SP1, TEAD2, WT1, YY1)可能會調控SOX21-AS1的轉錄活性,而這些轉錄因子與啟動子甲基化狀態之間的關係仍需要進一步實驗確認,未來我們也將進一步確認SOX21-AS1在口腔鱗狀細胞癌中的生物功能,總而言之,利用次世代定序法,我們找到許多異常的長片段非編碼核糖核酸,其中高度甲基化導致異常低表現的SOX21-AS1可作為口腔鱗狀細胞癌預後之生物標誌。
Abstract
Long non-coding RNAs (LncRNAs) are more than 200 nucleotides in length; however, they lack protein transcription ability. The biological function of lncRNAs could regulate cell growth, apoptosis, and metastasis in human cancer. However, the mechanism and biological function of lncRNAs remain unknown in oral squamous cell carcinoma (OSCC). In this study, we performed the transcriptome profiles of human OSCC tissues and corresponding adjacent normal tissues from two patients by Next Generation Sequencing (NGS) approach. According to our data, we identified 19 lncRNAs were upregulated (fold change > 2) and 20 lncRNAs downregulated (fold change < -2) in OSCC compared to corresponding adjacent normal tissues. Because our laboratory is interested in DNA methylation associated genes, downregulated lncRNAs are priority to further study. Therefore, we used the quantitative real-time polymerase chain reaction (RT-PCR) to examine the expression levels of lncRNA candidates, revealing that the expression levels of ATP13A4-AS1, IL20RB-AS1, LINC00265, LINC00478, LINC00568, MAST4-AS1, MIR600HG and SOX21-AS1 significantly decreased in OSCC tissues. We further assessed the impact of these lncRNAs on clinical outcomes, showing that low expression levels of LINC00265 well correlated with late pathologic stage (P value=0.013) and large tumor size (P value=0.006). Interestingly, Kaplan-Meier curves revealed that low expression level of SOX21-AS1 (SOX21 antisense RNA 1) was significantly associated with a shorter survival (log rank p value= 0.016) (crude hazard ratio 0.19, 95%CI 0.04-0.86, p=0.031). Multivariate analysis revealed that low expression levels of SOX21-AS1 significantly associated with a shorter survival (adjusted hazard ratio 0.19, 95%CI 0.04-0.87, p=0.032). In addition, the expression levels of SOX21-AS1 could be restored in oral cancer cells with 5-aza-2'-deoxycytidine (5-aza-dc) treatment. We further analyzed the methylation status of three individual CpG islands of SOX-21-AS1 using combined bisulfite restriction assay (COBRA) and revealed that hypermethylated promoter regions of SOX-21-AS1 were frequently observed in OSCC (CpG1: 65 out of 85, 76.5%; CpG2: 52 out of 85, 61.2%; CpG3: 49 out of 85; 57.6%). Hypermethylation of SOX21-AS1 promoter was significantly correlation with moderate or poor cell differentiation of OSCC. In vitro methylation assay showed that SOX21-AS1 transactivation activity could be significantly repressed with a hypermethylated promoter. Taking together, these results indicated that abnormal DNA hypermethylation might result in SOX21-AS1 repression in OSCC. We also identified 12 putative transcription factors (AP2alpha, CEBPA, CEBPB, GATA-1, NF-1, NF-kB, NR3C1, RelA, SP1, TEAD2, WT1, YY1) using bioinformatics approach. However, the detailed roles of them still need more experiments to confirm in the future. Concluding, our study revealed that DNA hypermethylation may result in silencing SOX21-AS1 expression in OSCC. Low SOX21-AS1 expression could be provided as a good independent prognostic biomarker for OSCC.
目次 Table of Contents
論文審定書+i
誌謝+ii
Abbreviations+iii-iv
摘要+v-vi
Abstract+vii-ix
Contents+x-xii
Introduction+1
1. Oral cancer+1
2. LncRNAs mechanism+1-3
3. LncRNAs in oral cancer+3-5
4. LncRNA, methylation and cancers+5-6
5. Next generation sequencing (NGS) and cancer+6-7
6. Specific aims+8
Materials and methods+9
1. Patients and tissue samples+9
2. Cell lines+9-10
3. Section, staining and laser capture microdissection (LCM) +10
4. Hematoxylin and eosin stain+10
5. Extraction of RNA from LCM cells for NGS+10-11
6. NGS+11
7. NGS analysis+11-12
8. DNA and RNA extraction from patient tissues+12
9. 5-aza-dC and TSA treatment+12-13
10. RT-PCR of lncRNAs+13
11. DNA bisulfite conversion+13
12. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis+14
13. SOX21-AS1 promoter construction+14-15
14. In vitro methylation+15
15. Luciferase assay+15
16. Nuclear/cytoplasmic RNA fractionation+16
17. Statistical analysis+16-17
Results+18
1. LncRNA profiling of oral squamous cell carcinoma+18-19
2. Expression of lncRNA candidates identified from NGS in OSCC patients+19
3. The correlation between lncRNA expression and clinicopathologic characteristics+19-20
4. DNA Silencing SOX21-AS1’s promoter activity+20-23
5. Predicted transcription factors binding to the SOX21-AS1 promoter+23-24
6. Cell RNA fractionation for confirming location of SOX21-AS1+24
7. Summary+24-25
Discussion+26-33
References+34-42
Table+43-55
Figures+56-71
參考文獻 References
1. Alam, M., Ahmad, R., Rajabi, H., Kharbanda, A., and Kufe, D. (2013). MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem 288, 30892-30903.

2. Atkinson, S.R., Marguerat, S., and Bahler, J. (2012). Exploring long non-coding RNAs through sequencing. Semin Cell Dev Biol 23, 200-205.

3. Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C.M., and Patel, T. (2011). microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30, 4750-4756.

4. Caglayan, D., Lundin, E., Kastemar, M., Westermark, B., and Ferletta, M. (2013). Sox21 inhibits glioma progression in vivo by forming complexes with Sox2 and stimulating aberrant differentiation. Int J Cancer 133, 1345-1356.

5. Chang, F., and Li, M.M. (2013). Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet 206, 413-419.

6. Chen, F.J., Sun, M., Li, S.Q., Wu, Q.Q., Ji, L., Liu, Z.L., Zhou, G.Z., Cao, G., Jin, L., Xie, H.W., et al. (2013). Upregulation of the long non-coding RNA HOTAIR promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Mol Carcinog 52, 908-915.

7. de Magalhaes, J.P., Finch, C.E., and Janssens, G. (2010). Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9, 315-323.

8. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775-1789.

9. Diepenbruck, M., Waldmeier, L., Ivanek, R., Berninger, P., Arnold, P., van Nimwegen, E., and Christofori, G. (2014). Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 127, 1523-1536.

10. Diez-Perez, R., Campo-Trapero, J., Cano-Sanchez, J., Lopez-Duran, M., Gonzalez-Moles, M.A., Bascones-Ilundain, J., and Bascones-Martinez, A. (2011). Methylation in oral cancer and pre-cancerous lesions (Review). Oncol Rep 25, 1203-1209.

11. Ebisuya, M., Yamamoto, T., Nakajima, M., and Nishida, E. (2008). Ripples from neighbouring transcription. Nat Cell Biol 10, 1106-1113.

12. Fang, Z., Wu, L., Wang, L., Yang, Y., Meng, Y., and Yang, H. (2014). Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis. Oral Surg Oral Med Oral Pathol Oral Radiol 117, 89-95.

13. Fassan, M., Simbolo, M., Bria, E., Mafficini, A., Pilotto, S., Capelli, P., Bencivenga, M., Pecori, S., Luchini, C., Neves, D., et al. (2014). High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers. Gastric Cancer 17, 442-449.

14. Feinberg, A.P., and Vogelstein, B. (1984). "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem 137, 266-267.

15. Gao, W., Chan, J.Y., and Wong, T.S. (2014). Long non-coding RNA deregulation in tongue squamous cell carcinoma. Biomed Res Int 2014, 405860.

16. Gibb, E.A., Brown, C.J., and Lam, W.L. (2011a). The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10, 38.

17. Gibb, E.A., Enfield, K.S., Stewart, G.L., Lonergan, K.M., Chari, R., Ng, R.T., Zhang, L., MacAulay, C.E., Rosin, M.P., and Lam, W.L. (2011b). Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol 47, 1055-1061.

18. Ha, P.K., and Califano, J.A. (2006). Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7, 77-82.

19. Ho, P.S., Ko, Y.C., Yang, Y.H., Shieh, T.Y., and Tsai, C.C. (2002). The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. J Oral Pathol Med 31, 213-219.

20. Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419.

21. Hung, T., and Chang, H.Y. (2010). Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7, 582-585.

22. Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Horlings, H.M., Shah, N., Umbricht, C., Wang, P., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43, 621-629.

23. Isikbay, M., Otto, K., Kregel, S., Kach, J., Cai, Y., Vander Griend, D.J., Conzen, S.D., and Szmulewitz, R.Z. (2014). Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 5, 72-89.

24. Jessri, M., and Farah, C.S. (2014). Next generation sequencing and its application in deciphering head and neck cancer. Oral Oncol 50, 247-253.

25. Jia, L.F., Wei, S.B., Gan, Y.H., Guo, Y., Gong, K., Mitchelson, K., Cheng, J., and Yu, G.Y. (2013). Expression, Regulation and Roles of MiR-26a and MEG3 in Tongue Squamous Cell Carcinoma. Int J Cancer.

26. Jiang, Y., Chu, Y., Tang, W., Wan, Y., Zhang, L., and Cheng, W. (2014). Transcription factor WT1 and promoter CpG hypomethylation coactivate HOXA10 expression in ovarian cancer. Curr Pharm Des 20, 1647-1654.

27. Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428.

28. Kasaai, B., Gaumond, M.H., and Moffatt, P. (2013). Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 288, 13278-13294.

29. Keogh, M.J., and Chinnery, P.F. (2013). Next generation sequencing for neurological diseases: new hope or new hype? Clin Neurol Neurosurg 115, 948-953.

30. Khan, S., Lopez-Dee, Z., Kumar, R., and Ling, J. (2013). Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett 337, 90-95.

31. Kong, L.M., Liao, C.G., Zhang, Y., Xu, J., Li, Y., Huang, W., Bian, H., and Chen, Z.N. (2014a). A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res 74, 3764-3778.

32. Kong, X.P., Yao, J., Luo, W., Feng, F.K., Ma, J.T., Ren, Y.P., Wang, D.L., and Bu, R.F. (2014b). The expression and functional role of a FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol Cell Biochem 394, 177-186.

33. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.

34. Li, Y., Ke, Q., Shao, Y., Zhu, G., Geng, N., Jin, F., and Li, F. (2015). GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling. Oncotarget 6, 4345-4356.

35. Lin, D.C., Hao, J.J., Nagata, Y., Xu, L., Shang, L., Meng, X., Sato, Y., Okuno, Y., Varela, A.M., Ding, L.W., et al. (2014). Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet 46, 467-473.

36. Lipovich, L., Johnson, R., and Lin, C.Y. (2010). MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta 1799, 597-615.

37. Liu, X.H., Liu, Z.L., Sun, M., Liu, J., Wang, Z.X., and De, W. (2013). The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer 13, 464.

38. Liu, Z., Yamanouchi, K., Ohtao, T., Matsumura, S., Seino, M., Shridhar, V., Takahashi, T., Takahashi, K., and Kurachi, H. (2014). High levels of Wilms' tumor 1 (WT1) expression were associated with aggressive clinical features in ovarian cancer. Anticancer Res 34, 2331-2340.

39. Lu, K.H., Li, W., Liu, X.H., Sun, M., Zhang, M.L., Wu, W.Q., Xie, W.P., and Hou, Y.Y. (2013). Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13, 461.

40. Ma, H., Hao, Y., Dong, X., Gong, Q., Chen, J., Zhang, J., and Tian, W. (2012). Molecular mechanisms and function prediction of long noncoding RNA. ScientificWorldJournal 2012, 541786.

41. Manoharan, M., Ramachandran, K., Soloway, M.S., and Singal, R. (2007). Epigenetic targets in the diagnosis and treatment of prostate cancer. Int Braz J Urol 33, 11-18.

42. Melzner, I., Scott, V., Dorsch, K., Fischer, P., Wabitsch, M., Bruderlein, S., Hasel, C., and Moller, P. (2002). Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem 277, 45420-45427.

43. Mitchell, S.M., Ross, J.P., Drew, H.R., Ho, T., Brown, G.S., Saunders, N.F., Duesing, K.R., Buckley, M.J., Dunne, R., Beetson, I., et al. (2014). A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 14, 54.

44. Moore, L.D., Le, T., and Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.

45. Moreira, D., Zhang, Q., Hossain, D.M., Nechaev, S., Li, H., Kowolik, C.M., D'Apuzzo, M., Forman, S., Jones, J., Pal, S.K., et al. (2015). TLR9 signaling through NF-kappaB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget.

46. Nie, Y., Liu, X., Qu, S., Song, E., Zou, H., and Gong, C. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci 104, 458-464.

47. Park, G.H., Lee, S.J., Yim, H., Han, J.H., Kim, H.J., Sohn, Y.B., Ko, J.M., and Jeong, S.Y. (2014). TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep 32, 1347-1354.

48. Petti, S., Masood, M., and Scully, C. (2013). The magnitude of tobacco smoking-betel quid chewing-alcohol drinking interaction effect on oral cancer in South-East Asia. A meta-analysis of observational studies. PLoS One 8, e78999.

49. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038.

50. Prensner, J.R., and Chinnaiyan, A.M. (2011). The emergence of lncRNAs in cancer biology. Cancer Discov 1, 391-407.

51. Qi, P., and Du, X. (2013). The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 26, 155-165.

52. Qiao, H.P., Gao, W.S., Huo, J.X., and Yang, Z.S. (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 14, 1077-1082.

53. Qin, R., Chen, Z., Ding, Y., Hao, J., Hu, J., and Guo, F. (2013). Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis. Neoplasma 60, 486-492.

54. Ram, H., Sarkar, J., Kumar, H., Konwar, R., Bhatt, M.L., and Mohammad, S. (2011). Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 10, 132-137.

55. Rinn, J.L., and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu Rev Biochem 81, 145-166.

56. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323.

57. Sati, S., Ghosh, S., Jain, V., Scaria, V., and Sengupta, S. (2012). Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res 40, 10018-10031.

58. Scarpa, A., Sikora, K., Fassan, M., Rachiglio, A.M., Cappellesso, R., Antonello, D., Amato, E., Mafficini, A., Lambiase, M., Esposito, C., et al. (2013). Molecular typing of lung adenocarcinoma on cytological samples using a multigene next generation sequencing panel. PLoS One 8, e80478.

59. Sekimata, M., Murakami-Sekimata, A., and Homma, Y. (2011). CpG methylation prevents YY1-mediated transcriptional activation of the vimentin promoter. Biochem Biophys Res Commun 414, 767-772.

60. Shi, D., Xie, F., Zhang, Y., Tian, Y., Chen, W., Fu, L., Wang, J., Guo, W., Kang, T., Huang, W., et al. (2014). TFAP2A regulates nasopharyngeal carcinoma growth and survival by targeting HIF-1alpha signaling pathway. Cancer Prev Res (Phila) 7, 266-277.

61. Shi, X., Wang, X., Li, Q., Su, M., Chew, E., Wong, E.T., Lacza, Z., Radda, G.K., Tergaonkar, V., and Han, W. (2013). Nuclear factor kappaB (NF-kappaB) suppresses food intake and energy expenditure in mice by directly activating the Pomc promoter. Diabetologia 56, 925-936.

62. Shyr, D., and Liu, Q. (2013). Next generation sequencing in cancer research and clinical application. Biol Proced Online 15, 4.

63. Sorensen, K.P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., Larsen, M.J., and Kruse, T.A. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 142, 529-536.

64. Struhl, K. (2007). Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14, 103-105.

65. Sun, M., Xia, R., Jin, F., Xu, T., Liu, Z., De, W., and Liu, X. (2013). Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol.

66. Swiezewski, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799-802.

67. Tan, M., Myers, J.N., and Agrawal, N. (2013). Oral cavity and oropharyngeal squamous cell carcinoma genomics. Otolaryngol Clin North Am 46, 545-566.

68. Tang, H., Wu, Z., Zhang, J., and Su, B. (2013). Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol Med Rep 7, 761-766.

69. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65, 87-108.

70. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689-693.

71. Wang, J., Zhang, J., Zheng, H., Li, J., Liu, D., Li, H., Samudrala, R., Yu, J., and Wong, G.K. (2004). Mouse transcriptome: neutral evolution of 'non-coding' complementary DNAs. Nature 431, 1 p following 757; discussion following 757.

72. Wang, K.C., and Chang, H.Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell 43, 904-914.

73. Weng, W., Wang, M., Xie, S., Long, Y., Li, F., Sun, F., Yu, Y., and Li, Z. (2014). YY1-C/EBPalpha-miR34a regulatory circuitry is involved in renal cell carcinoma progression. Oncol Rep 31, 1921-1927.

74. Wilusz, J.E., Sunwoo, H., and Spector, D.L. (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23, 1494-1504.

75. Wu, Y., Zhang, L., Wang, Y., Li, H., Ren, X., Wei, F., Yu, W., Liu, T., Wang, X., Zhou, X., et al. (2015). Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol 46, 2586-2594.

76. Xu, M., Chen, X., Chen, N., Nie, L., Li, X., Li, Q., Zeng, H., and Zhou, Q. (2013a). Synergistic silencing by promoter methylation and reduced AP-2alpha transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth. Am J Pathol 182, 84-95.

77. Xu, Z.Y., Yu, Q.M., Du, Y.A., Yang, L.T., Dong, R.Z., Huang, L., Yu, P.F., and Cheng, X.D. (2013b). Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci 9, 587-597.

78. Xue, M., Li, X., Wu, W., Zhang, S., Wu, S., Li, Z., and Chen, W. (2014). Upregulation of long non-coding RNA urothelial carcinoma associated 1 by CCAAT/enhancer binding protein alpha contributes to bladder cancer cell growth and reduced apoptosis. Oncol Rep 31, 1993-2000.

79. Yang, F., Bi, J., Xue, X., Zheng, L., Zhi, K., Hua, J., and Fang, G. (2012). Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279, 3159-3165.

80. Yang, Z., Zhou, L., Wu, L.M., Lai, M.C., Xie, H.Y., Zhang, F., and Zheng, S.S. (2011). Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18, 1243-1250.

81. Zhou, Y., Zhang, X., and Klibanski, A. (2012). MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48, R45-53.

82. Zou, A.E., Ku, J., Honda, T.K., Yu, V., Kuo, S.Z., Zheng, H., Xuan, Y., Saad, M.A., Hinton, A., Brumund, K.T., et al. (2015). Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma. RNA 21, 1122-1134.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code