Responsive image
博碩士論文 etd-0803115-113703 詳細資訊
Title page for etd-0803115-113703
論文名稱
Title
內波與沙波環境之音傳效應研究
The study of acoustic propagation effects induced by sand dunes and internal waves
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-12
繳交日期
Date of Submission
2015-09-04
關鍵字
Keywords
內波、南海海域、沙波、音傳模式、模態耦合效應
South China Sea, internal wave, sand dune, acoustic model, mode coupling
統計
Statistics
本論文已被瀏覽 5692 次,被下載 92
The thesis/dissertation has been browsed 5692 times, has been downloaded 92 times.
中文摘要
南海海域由於其特殊的地理位置、活躍的內波環境與沙波地形成為現今的軍事與科學重點研究區域,其中內波所造成的溫鹽及聲速差異和沙波地形都對聲波傳遞有明顯的影響。本研究主要探討音傳在內波與沙波共存環境中的音傳效應,在分析方法上使用模式進行模擬,利用2013年及2014年的南海實驗資料將沙波與內波的尺度做為模擬參數設定,以此對內波及沙波環境進行音傳模擬,模擬討論在不同尺度的內波、沙波組合下的聲學模態耦合效應。結果顯示沙波會使原本沿底床傳遞的低階模態被激發到表層水層,使其耦合至高階模態,水層中的聲能重新分布。在變動沙波波高部份,隨著沙波波高的增加,沙波所造成的模態耦合強度也隨之增加;在變動沙波波長部份,隨著沙波波長的增加,沙波整體起伏對地形而言變的平緩,即沙波波高越長,沙波對音傳的模態耦合效應影響便越小。且其模態耦合規律可由波數差進行預測,利用沙波波長及聲源頻率算出波數差,即可不經由實驗或模式得知產生耦合的模態數。在內波與沙波共存環境中,改變內波波高及波長都僅對鄰近模態產生耦合,內波波高的變動的部份,隨著內波波高增加,被內波擠壓造成耦合的模態數越多;而在內波波長變動的部份,隨著內波波長增加,同一模態內之能量受到耦合影響的範圍越大。將沙波與內波尺度變動的部份比較發現,因此內波、沙波尺度的變化都會對水下音傳中的模態產生耦合效應,且沙波與內波造成耦合的結果相反。
本研究成果可進一步運用於內波及沙波等低頻環境對音傳之影響,而本研究之理論模式未來可做為三維模式發展基礎,進行三維效應模擬分析。
Abstract
The South China Sea becomes a military and important scientific area now because of its specific location, dynamic water column, active internal wave behavior and significant bathymetry(sand dune topography). The temperature and salinity variability caused by internal wave and the sand dune topography both obviously affect acoustic propagation. This thesis uses acoustic model to explore the acoustic effect in the environment with subaqueous sand dunes and internal wave. The sand dune and internal wave parameters used in acoustic model are referred to 2013 and 2014 South China Sea acoustic experiment data. The simulation results demonstrate that mode 1 energy coupling to higher modes increases as the sand dune amplitude increases, and the coupling mode number increases as wavelength decreases which reveals the wavelength resonance effect. The wavelength resonance effect is more dominant than frequency resonance. With internal wave scale changing, mode 1 energy couple to adjacent higher modes when sound propagate across internal wave. The results demonstrate that coupling mode numbers increase as amplitude increases, and the mode energy coupled in the same mode increase as wavelength increases. Therefore, the results caused by sand dune and internal wave are opposite. This study shows that the variability of sand dunes and internal waves scale cause a part of acoustic mode to exchange energy in each other.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與研究目的 2
1.3 文獻回顧 3
1.3.1 聲學數值模式 3
1.3.2 內波與沙波研究 4
1.4 研究方法 5
第二章 模式理論 7
2.1 二維聲場模式 7
2.2 FEPE模式 9
第三章 南海海域實驗簡介 12
3.1 2013年南海實驗 13
3.2 2014年南海實驗 15
第四章 音傳模擬結果 19
4.1 沙波環境 20
4.1.1 沙波波高變動效應 22
4.1.2 沙波波長變動效應 26
4.1.3 聲源頻率變動效應 35
4.2 內波與沙波共存環境 40
4.2.1 內波波高變動效應 44
4.2.2 內波波長變動效應 53
第五章 結論與討論 63
5.1 結論 63
5.2 三維模式延伸討論 66
參考文獻 69
附錄A 三維聲場理論 73
附錄B RAM模式 78
附錄C x-y平面參數設定 80
參考文獻 References
[1] A. Tolstoy, (1996) “3-D propagation issues and models”, J. of Computational Acoustics, Vol. 4, pp. 243-271
[2] M. D. Collins, (1988) “FEPE user’s guide”, NORDA technical note 365(Naval Research Laboratory, Stennis Space Centerm, MS)
[3] F. D. Tappert, (1977) “The parabolic approximation method in Wave Propagation and Underwater Acoustics”, edited by J. B. Keller and J. S. Papadakis (Springer, New York, 1977), Lecture Notes in Physics, Vol. 70, pp. 224-287
[4] J. F. Lynch, S. R. Ramp, C. S. Chiu, T. Y. Tang, Y. J. Yang and J. A. Simmen, (2004) “Research highlights from the Asian seas international acoustics experiment in the south china sea” IEEE J. Oceanic Eng., Vol. 29, pp. 1067-1074
[5] C. S. Chiu, S. R. Ramp, C. W. Miller, J. F. Lynch, T. F. Duda, and T. Y. Tang, (2004) “Acoustic intensity fluctuations induced by South China Sea internal tides and solitons.” IEEE J. Oceanic Eng., Vol. 29, pp. 1249-1263
[6] L. Y. S. Chiu, D. B. Reeder, Y. Y. Chang, C. F. Chen, C. S. Chiu and J. F. Lynch, (2013) “Enhanced acoustic mode coupling resulting from an internal solitary wave approaching the shelfbreak in the South China Sea” J. Acoust. Soc. Am., Vol. 133, pp. 1306-1319.
[7] J. C. Preisig and T. F. Duda, (1997) “Coupled acoustic mode propagation through continental-shelf internal solitary waves” IEEE J. Oceanic Eng., Vol. 22, pp. 256-269
[8] T. F. Duda, (2004) “Acoustic mode coupling by nonlinear internal wave packets in as shelfbreak front area”, IEEE J. Ocean. Eng., Vol. 29, pp. 118-125
[9] J. A. Colosi, (2008) “Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves”, J. Acoust. Soc. Am., Vol. 124, pp. 1452-1464
[10] J. F. Lynch, Y.-T. Lin, T. F. Duda, and A. E. Newhall (2010) “Acoustic ducting, shadowing, reflection and dispersion by curved non-linear internal waves in shallow water”, IEEE J. Ocean. Eng., Vol. 35, pp. 12-27
[11] Y.-T., Lin, T. F. Duda and J. F. Lynch (2009) “Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area”, J. Acoust. Soc. Am., Vol. 126, pp. 1752-1765
[12] D. B. Reeder, B. B. Ma and Y. J. Yang, (2011) “Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves” Mar. Geol., Vol. 279, pp. 12–18.
[13] 廖柏智 (2011),孤立內波與沙波形成之數值模擬研究,國立中山大學海下科技技應用海洋物理研究所碩士論文。
[14] L.Y.S. Chiu and A.Y.Y. Chang, (2014) “Normal incidence measurement in a subaqueous sand dune field in the South China Sea” J. Acoust. Soc. Am., Vol. 136, pp. 376-382.
[15] L.Y.S. Chiu, and D. B. Reeder (2013) “Acoustic mode coupling due to subaqueous sand dunes in the South China Sea”, J. Acoust. Soc. Am., Vol. 134, pp. 198-204.
[16] M. D. Collins, “User’s guide for RAM versions 1.0 and 1.0p”, Naval Research Laboraory
[17] D. Lee and M. H. Schultz, (1995) “Numerical ocean acoustic propagation in three dimensions”, World scientific
[18] D. Lee, Y. Saad, and M. H. Schultz, (1986) “An efficient method for solving the three-dimensional wide angle wave equation”, J. of Computational Acoustics, Vol. 1, pp. 75-90
[19] M. D. Collins, (1993) “A split-step Pade solution for parabolic equation method”, J. Acoust. Soc. Am., Vol. 93, pp. 1736-1742.
[20] M. D. Collins, (1992) “A self-starter for the parabolic equation method”, J. Acoust. Soc. Am., Vol. 92, pp. 1068-1075.
[21] M. B. Porter, and H. P. Bucker, (1987) “Gaussian beam tracing for computing ocean acoustic fields” J. Acoust. Soc. Am., Vol. 82, pp. 1349-1359.
[22] E. Shang and Y. Wang, (1993) “Acoustic travel time computation based on PE solution”, J. of Computational Acoustics, Vol. 1, pp. 91-100
[23] P. C. Etter, (2003) “Underwater acoustic modeling and simulation 3rd edition”, Spon Press
[24] F. B. Jensen, W. A. Kuperman, M. B. Porter and H. Schmidt, (1994) “Computational ocean acoustics”, Springer Science & Business Media
[25] L. B. Dozier and F. D. Tappert, (1978) “Statistics of normal mode amplitudes in a random ocean . I. Theory”, J. of Acoust. Soc. Am., Vol. 63, pp. 353-365
[26] S. T. McDaniel and D. F. McCammon, (1987) “Mode coupling and the environment sensitivity of shallow-water propagation loss predictions”, J. of Acoust. Soc. Am., Vol. 82, pp. 217-223
[27] J. X. Zhou, X. Z. Zhang and P. H. Rogers, (1991) “Resonant interaction of sound wave with internal solitons in the coastal zone”, J. of Acoust. Soc. Am., Vol. 90, pp. 2042-2054
[28] T. M. Georges, R. M. Jones and J. P. Riley, (1986) “Simulation ocean acoustic tomography measurements with Hamiltonian ray tracing”, IEEE J. Ocean. Eng., Vol. 11, pp. 58-71
[29] D. B. Reeder, B. B. Ma and Y. J. Yang, (2011) “Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves” Mar. Geol., Vol. 279, pp. 12–18.
[30] 劉金源 (2001),水中聲學-水聲系統之基本操作原理,國立編譯館。
[31] 連于穎 (2014),南海沙波地貌之音傳效應研究,國立中山大學海下科技技應用海洋物理研究所碩士論文。
[32] 鄭郁蓁 (2014),水下音傳之聲線模態法建立,國立台灣大學工程科學及海洋工程學研究所碩士論文。
[33] 劉孟竺 (2014),三維海洋音傳與海床沙丘效應之研究,國立台灣大學工程科學及海洋工程學研究所碩士論文。
[34] 盧鴻銘、張元櫻、邱永盛 (2015),內波與沙波環境之音傳效應研究,第十七屆水下技術研討會暨科技部成果發表會。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code