Responsive image
博碩士論文 etd-0803116-144845 詳細資訊
Title page for etd-0803116-144845
論文名稱
Title
鎳鉻薄膜電阻電氣特性之研究
The Study of the Electrical Properties of the Ni-Cr Thin Film Resistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-28
繳交日期
Date of Submission
2016-09-03
關鍵字
Keywords
薄膜電阻器、傳導機制、磁控濺鍍、電阻溫度係數、鎳鉻薄膜
conduction mechanism, magnetron sputtering, Thin film resistor, NiCr film, Temperature coefficient of resistance
統計
Statistics
本論文已被瀏覽 5753 次,被下載 46
The thesis/dissertation has been browsed 5753 times, has been downloaded 46 times.
中文摘要
隨著資訊科技、通訊技術及可攜式電子零件的發展,電子元件的需求也逐年遽增。因此對於被動元件具高精度、高可靠度、低溫度係數及低電壓敏感性也極為重要。薄膜電阻器製程主要以薄膜濺鍍技術形成,因此具電阻值高精準度、低電阻溫度係數及高可靠度等特性而廣為被應用於電子電路中。
薄膜電阻器的製程過程中,鐳射調阻的製程決定電阻值的精準度,但電阻溫度係數特性則與濺鍍靶材成份、濺鍍製程參數及電阻層的退火有密切關係。
本研究中,主要探討鎳鉻電阻薄膜在不同薄膜厚度及不同退火溫度情況下對薄膜電阻溫度係數的影響,並且得知電子的平均自由路徑,及載子的散射機制,如表面散射、晶界散射及表面粗糙度散射。
實驗得知,鎳鉻薄膜的平均自由路徑為 24.2 nm,當薄膜厚度小於電子平均自由路徑,薄膜電阻的溫度係數隨著退火溫度的增加而增加,此現象因濺鍍後的薄膜為一不連續的結構,在退火製程後形成島狀結構,使電子的散射隨溫度的影響較為明顯。當薄膜厚度大於電子平均自由路徑,此薄膜為一連續結構,經退火的製程後,在表面形成氧化鉻薄膜,使得薄膜內部的鎳鉻元素比例增加,使薄膜電阻的溫度係數隨溫度而遞減。
最後,鎳鉻薄膜電阻的不同載子散射機制於不同厚度的薄膜已被驗證。薄膜氧化現象及內部元素的擴散現象解釋電阻溫度係數在不同退火溫度對不同厚度的影響。藉由此現象,此研究結果可得一薄膜電阻器的電阻溫度係數低於 ±5 ppm/0C。
Abstract
With the demand of electronic devices increasing for information and telecommunication technologies, the passive component with high precision and high reliability properties have become more important in the recent years. The main process of thin film resistor is by sputtering technology to perform high precision of resistance, lower temperature coefficient of resistance (TCR) and high reliability properties. The thin film resistors are widely used in electronic circuit.
Among the thin film resistor processes, the laser trimming dominate the precision of resistance and TCR is dominated by composition of sputtering target, sputtering condition and annealing condition.
In this study, we focus on the dependence of TCR on different Ni-Cr film thickness and different annealing conditions. The electron mean free path (MFP) and scattering mechanisms of carriers due to surface scattering, grain boundary scattering and surface roughness scattering of Ni-Cr film have been determinate.
The experimental results show the electron MFP is about 24.2nm. The TCR performance is increasing with annealing temperature increasing obviously for the thickness of Ni-Cr film is less than electron MFP. The TCR performance is stable as the Ni-Cr film thickness is thicker than the electron MFP, and decreases slightly as the annealing temperature increases. This is because the film is discontinuous with island structure which scattering of electrons at imperfections is dependent on temperature and the TCR increasing. For the thickness of Ni-Cr film is thicker than electron MFP, the film is continuous structure. There is a Cr2O3 oxidation layer on the surface of thicker Ni-Cr film after annealing process. An interdiffusion reaction phenomenon is occurrence. The Cr is diffused out to form Cr2O3 layer and caused higher Ni concentration in inside conductive layer. Thus the TCR decreased with the increase in annealing temperature.
Finally, the electrical conduction mechanisms of Ni-Cr thin film resistor are demonstrated by different film thickness through scattering models fitting. The resistivity and temperature coefficient of the resistance of Ni-Cr thin film are measured to investigate the influence of thickness with different annealing temperature. An oxidation and atom inter-diffusion model was proposed to explain the effects of film thickness on the electrical properties of Ni-Cr thin film resistor under different annealing temperature. As the result, we obtained the thin film resistors of low TCR under ±5 ppm/0C at -55 0C and 125 0C.
目次 Table of Contents
中文審定書 ………………………………………………………………………...…i
英文審定書 ………………………………………………………………………......ii
誌謝 ……………………………………………………………………………….... iii
摘要 …………………………………………………………………………….…....iv
Abstract …………………………………………………………………………....…v
Chapter 1 Introduction ………………………………………………………….…….1
1.1 Background …………………………………………………………….………1
1.2 Motivation …………………………………………………………….………..1
1.3 Reference ………………………………………………………………………3
Chapter 2 Overviews: Temperature Coefficient of Resistance (TCR) of Thin Film Chip Resistor …………………………………………………………………………9
2.1 Sputtering target composition …………………………………………………11
2.2 Thin film deposition process ………………………………………………….16
2.3 Annealing treatment process ………………………………………………….22
2.4 Substrate ………………………………………………………………………27
2.5 Reference ……………………………………………………………………...30
Chapter 3 Experiments ………………………………………………………………34
3.1 Thin Film Chip Resistor process …………………………………………….. 34
3.2 Measurement and Analysis ……………………………………………………36
3.2.1 Resistance measurement ……………………………………………...36
3.2.2 Four-point measurement ……………………………………………...36
3.2.3 TCR measurement ……………………………………………………36
3.2.4 SEM (Scanning electrode microscope) ………………………………36
3.2.5 XRD (X-ray diffraction) ……………………………………………...36
3.2.6 AES (Auger electrode spectroscopy) ……...........................................37
3.2.7 TEM (Transmission electrode microscopy) ………………………….37
Chapter 4 TCR control of Ni-Cr resistive film deposited by DC magnetron sputtering …………………………………………………………………………….38
4.1 Introduction and Motivation ………………………………………………..38
4.2 Experimental Procedures …………………………………………………...39
4.3 Results and Discussion ……………………………………………………..40
4.3.1 Electron Mean Free Path Calculation ……………………………...40
4.3.2 Resistivity and annealing temperature …………………………….41
4.3.3 TCR and annealing temperature …………………………………...48
4.4 Summary ..………………………………………………………………….50
4.5 Reference …………………………………………………………………...51
Chapter 5 Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor ……………………………………………………………………..53
5.1 Introduction and Motivation ……………………………………………….53
5.2 Experimental Procedures …………………………………………………...54
5.3 Results and Discussion ……………………………………………………..55
5.3.1 Structure …………………………………………………………...55
5.3.2 Composition ……………………………………………………….56
5.3.3 Surface morphology ……………………………………………….61
5.3.4 Electrical properties ……………………………………….……….66
5.4 Summary ...…………………………………………………………………69
5.5 Reference …………………………………………………………………...70
Chapter 6 The Film Thickness Effect on Electrical Conduction Mechanisms and Characteristics of the Ni-Cr Thin Film Resistor …………………………………….73
6.1 Introduction and Motivation ………………………………………………..73
6.2 Experimental Procedures …………………………………………………...74
6.3 Results and Discussion ……………………………………………………..76
6.3.1 Electrical conduction mechanism ………………………………….76
6.3.2 Electrical Property …………………………………………………79
6.4 Summary …………………………………………..……………………….84
6.5 Reference …………………………………………………………………...85
Chapter 7 Conclusion ………………………………………………………………..87
Chapter 8 Future work ……………………………………………………………….88
參考文獻 References
[1-1] P. L. Kirby, “Application of resistive thin films in electronics,” Thin Solid Films, vol. 50, pp. 211-221, 1978.
[1-2] M. Hrovat, A. Bencan, D. Belavic, J. Holc, G. Drazic, “The influence of firing temperature on the electrical and mirostructural characteristics of thick-film resistor for strain gauge applications,” Sensor and Actuators A, vol. 103, pp. 341-352, 2003.
[1-3] X. Dong, J. Wu, “Formation of an intermetallic phase by crystallization in the Cr-Si-Ni-Al amorphous film,” Journal of Alloys and Compounds, vol. 359, pp. 256-260, 2003.
[1-4] X. Dong, J. Wu, “The influence of zirconium on the crystallization behavior and electrical properties of Cr-Si-Al resistive films,” Material Science and Engineering A, vol. 371, pp. 1-8, 2004.
[1-5] K. Hieber, R. Dittmann, “Structure and electrical properties of CrSi2 thin film resistors, ” Thin Solid Films, vol. 36, pp. 357-360, 1976.
[1-6] K. H. Bather, G. Zies, R. Voigthann, W. Moldenhauer, H. Schreber, “Interdiffusion and reaction in (Cr-Si)/Al and (Cr-Si-O)/Al thin film systems,” Thin Solid Films, vol. 188, pp. 67-83, 1990.
[1-7] X. Dong, J. Wu, L. Mao, “The crystallization of Cr-Si-Ni-Al amorphous films-nucleation and growth of intermetallic phase Cr(Al,Si)2,” Intermetallics, vol. 11, pp. 779-785, 2003.
[1-8] X. Dong, J. Wu, “Study on the crystallization of amorphous Cr-Si-Ni thin films using in situ X-ray diffraction,” J. Mater. Sci. Technol., vol. 17, pp. 43-46, 2001.
[1-9] Y. Zhang, X. Dong, J. Wu, “Environmental effects on electrical properties of Cr-Cr-Ni resistive film deposited by magnetron sputtering,” Materials Science and Engineering B, vol. 122, pp. 121-126, 2005.
[1-10] G. Golan, A. Axelevitch, R. Margolin, E. Rabinovitch, “Novel approach to sputtered tantalum film resistors with controlled pre-defined resistance,” Microelectronics Journal, vol. 32, pp. 61-67, 2001.
[1-11] R. C. Piteth, H. N. Keller, J. M. Morabito, “High pressure steam stabilization of tantalum thin film resistors, ” Thin Solid Films, vol. 87. pp. 1-11, 1982.
[1-12] H. Shen, R. Ramanathan, “Fabrication of low resistivity tantalum nitride thin film,” Miroelectronic Engineering, vol. 83, pp. 206-212, 2006.
[1-13] S. M. Kang, S. G. Yoon, S. J. Suh, D. H. Yooh, “Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors,” Thin Solid Films, vol. 516, pp. 3568-3571, 2008.
[1-14] K. Radhakrishnan, N. G. Ing, R. Gopalakrishnan, “Reactive sputter deposition and characterization of tantalum nitride thin films, ” Material Science and Engineering, vol. B57, pp. 224-227, 1999.
[1-15] M. Deery, K. H. Goh, K. G. Stephens, I. H. Wilson, “Reactive ion bombardment of tantalum thin film resistors,” Thin Solid Films, vol. 17, pp. 59-66, 1973.
[1-16] C. L. Au, W. A. Anderson, “Stability of tantalum nitride thin films resistors,” J. Mater. Res., vol. 5, pp. 1224-1232, 1990.
[1-17] J. W. Yan, J. C. Zhou, “Optimising of strain sensitivity and electric characteristics of Ni-Cr thin film fabricated by magnetron sputtering,” Material Science and Technology, vol. 23, pp. 195-202, 2007.
[1-18] J. G. Swanson, D. S. Campbell, “The structure and electrical properties of 80:20 NiCr thin films,” Thin Solid Films, vol. 1, pp. 183-202, 1967.
[1-19] I. H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, “Characterization of sputtered nichrome (Ni-Cr 80/20 wt.%) films for strain gauge applications, ” Thin Solid Films, vol. 515, pp. 2602-2606, 2006.
[1-20] I. H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, “The electromechanical behavior of nichrome (80/20 wt%) film,” Thin Solid Films, vol. 433, pp. 337-343, 2003.
[1-21] D. Nachrodt, U. Paschen, A. T. Have, H. Vogt, “ Ti/Ni(80%)Cr(20%) thin-film resistor with a nearly zero temperature coefficient of resistance for integratoin in a standard CMOS process,” IEEE Electron Device Letters, vol. 29, pp. 212-214, 2008.
[1-22] E. Bloch, D. Mistele, R. Brener, C. Cytermann, A. Gavrilov, D. Ritter, “NiCr thin film resistor integration with InP technology,” Semiconductor Science and Technology, vol. 26, pp. 105004-1-10500403, 2011.
[1-23] L. F. Lai, X. S. Su, X. Z. Fu, R. Sun, C. P. Wong, “The microstructure and properties of C and W co-doped NiCr embedded thin film resistors, ” Surface & Coating Technology, vol. 259. pp. 759-766, 2014.
[2-1] G. Zhigal’skii and B. Jones, “Electrocomponent science monographs –The physical properties of thin metal films,” Taylor and Francis Publications. pp.1-25, 2003.
[2-2] X. Y. Wang, Z. S. Zhang, T. Bai, “Investigation on power metallurgy Cr-Si-Ta-Al alloy target for high-temperature thin film resistors with low temperature coefficient of resistance,” Materials and Design, vol. 31, pp. 1302-1307, 2010.
[2-3] L. I. Belic, K. Pozun, M. Remskar, “AES, AFM and TEM studies of NiCr thin films for capacitive humidity sensors,” Thin Solid Film, vol. 317, pp. 173-177.
[2-4] L. Xiao, L. Du, Z, Zhao, Z. Fang, J. Xu, “TCR of the NiCr thin film resistors used in piezoresistive pressure sensor, ” Key Engineering Materials, vol. 438. pp. 735-739, 2011.
[2-5] A. Datta, X. Cheng, M. A. Miller, X. Li, “High temperature annealing effects on chromel (Ni90Cr10) thin films and interdiffusion study for sensing applications,” Thin Solid Films, vol. 516, pp. 4307-4311, 2008.
[2-6] N. Phuong, D. Kim, B. Kang, C. Kim and S. Yoon, “Effect of chromium concentration on the electrical properties of NiCr thin film resistors deposited at room temperature by magnetron cosputtering technique,” Journal of the Electrochemical Society, vol. 153, pp. G27-G29, 2006.
[2-7] C. Au, M. Jackson and W. Anderson, (1987), Structural and electrical properties
of stable Ni/Cr thin films, Journal of Electronic Materials, 16(4) pg301-306.
[2-8] M. Danisman, N. Cansever, “Effect of Cr content on mechanical and properties of Ni-Cr thin films,” Journal of Alloy and compounds, vol. 493. pp. 649-563, 2010.
[2-9] A. B. Marian, R. Manaila, G. Korony, C. Constantin, A. Devenyi, “Electrical properties and structural defects of Ni-Cr thin films,” Thin Solid Films, vol. 139, pp. 15-24, 1986.
[2-10] W. Bruckner, W. Pitschke, J. Thomas, G. Leitner, “Stress, resistance, and phase transitions, in NiCr (60 wt%) thin films, ” Journal of Applied Physics, vol. 87, pp. 2219- 2226, 2000.
[2-11] J. Zelenka, V. Chudoba, J. Rehak, “Thin resistive film with temperture coefficient of reistance close to zero,” Thin Solid Films, vol. 200, pp. 239-246, 1991.
[2-12] J. Yan, J. Zhou, “The oxidation and the electrical properties of Ni-Cr thin film after rapid thermal annealing,” International Journal of Modern Physics B, vol. 21, pp. 4561-4574, 2007.
[2-13] M. A. Bayne, “Al-doped Ni-Cr for temperature coefficient of resistance control in hybrid thin-film resistors,” J. Vac. Sci. Technol. vol. 4, pp. 3142-3145, 1986.
[2-14] E. Schippel, “Properties of evaporated Ni-Cr films with an aluminum content of about 50%,” Thin Solid Films, vol. 123. pp. 57-62, 1985.
[2-15] E. Schippel, “Ternary alloy films of Ni-Cr-Al for thin film resistors,” Thin Solid Films, vol. 146, pp. 133-138. 1987.
[2-16] E. Schippel, “Structure of vacuum-deposited thick films of Ni-Cr-Al,” Thin Solid Films, vol. 120, pp. 69-73. 1984.
[2-17] E. Schippel, “The influence of silicon on properties of deposited Ni-Cr films,” Thin Solid Films, vol. 144, pp. 21-28, 1986.
[2-18] W. Gawalek, “Resistance, temperature coefficient of resistance and long-term stability of annealed thin Ni-Cr-Si films,” Thin Solid Films, vol. 116, pp. 205-210, 1984.
[2-19] B. J. Le, G. B. Park, J. I. Kim, D. C. Lee, “The effect of the process parameters on the electrical properties of Ni-Cr-Si alloy thin resistor films,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 72-74, 2002.
[2-20] F. B. Chang, L. N. Kang, “The influence of iron on properties of sputter Ni-Cr-Si film resistors, ” Thin Solid Films, vol. 185, pp. 341-346. 1990.
[2-21] B. J. Lee, D. C. Lee, “Electrical properties of sputtered Ni-Cr-Al-Cu thin film resistors with Ni and Cr Contents,” Journal of the Korea Physical Society, vol. 40, pp. 339-343, 2002.
[2-22] B. J. Lee, B. H. Lee, D. C. Lee, “Quaternary alloy films for thin film resistors, ” Jpn. J. Appl. Phys, vol. 42, pp. 1405-1409, 2003.
[2-23] W. E. Isler, L. A. Kitchman, “Influence of deposition and processing parameters on the TCR of Ni-Cr-Cu-Al alloy film resistors,” IEEE Transactions on Parts, Materials and Packaging, vol. PMP-5, pp. 139-145, 1969.
[2-24] B. J. Lee, S. Lee, P. K. Shin, “Precision thin film resistors based on Ni-Cr quinternary alloy thin film prepared by magnetron sputtering technique,” Japanese Journal of Applied Physics, vol. 48, pp. 055502-1-05502-5, 2009.
[2-25] L. Lai, W. J. Zeng, X. Z. Fu, R. Sun, R. X. Du, “Optimization of sputtering parameters for Ni-Cr alloy deposition on cooper foil as embedded thin film resistor,” Surface & Coatings Technology, vol. 218, pp. 80-86, 2013.
[2-26] Y. Sato, M. Watanabe, S. Sato, “Electrical properties of Ni-Cr-N thin films deposited by multitarget reactive sputtering,” Jpn. J. Appl. Phys, vol. 40. pp. 5091-5094, 2001.
[2-27] W. R. Hardy, D. K. Murti, “Electrical and structural properties of NiCr thin film resistors reactively sputtered in O2,” Thin Solid Films, vol. 20, pp. 345-362, 1974.
[2-28] J. J. Van Den Broek, J. J. T. M. Donkers, R. A. F. Van Der Rijt, J. T. M. Janssen,“Metal film precision resistors: resistive metal films and new resistor concept,” Philips. J. Res., vol. 51. pp. 429-447, 1998.
[2-29] L. Lai, W. J. Zeng, X. Z. Fu, R. Sun, R. Du, “Annealing effect on the electrical properties and microstructure of embedded Ni-Cr thin film resistor,” Journal of Alloy and Compounds, vol. 538, pp.125-130. 2012.
[2-30] G. Nocerino, K. E. Singer, “Resistance stabilization of Ni-Cr films by surface oxide formation,” J. Vac. Sci. Techno., vol. 16, pp. 147-150, 1979.
[2-31] N. M. Phoung, D. J. Kim, B. D. Kang, S. G. Yoon, “Structural and electrical properties of NiCr thin films annealed at various temperatures in a vacuum and a nitrogen ambient for π-type attenuator application,” Journal of the Electrochemical Society, vol. 153, pp. 660-663. 2006.
[2-32] H. Degenhart, L. Pratt, “Temperature and other characteristics of thin film nichrome resistors on various substrate materials,” Electronic Engineers International Convention, vol. 11, pg59-68, 1963.
[2-33] Y. Kwon, N. H. Kim, G. P. Choi, W. S. Lee, Y. J. Seo, J. Park, “Structure and surface properties of NiCr thin films prepared by DC magnetron sputtering under variation of annealing conditions,” Microelectronic Engineering, vol. 82, pp. 314-320, 2005.
[2-34] J. Rolke, “Nichrome thin film technology and its application,” Electrocomponent Science and Technology, vol. 9, pp. 51-57, 1981.
[2-35] L. Lai, X. Z. Fu, R. Sun, R. X. Du,“Comparison of microstructure and electrical properties of NiCr alloy thin film deposited on different substrates,” Surface & Coating Technology, vol. 235, pp. 552-560, 2013.
[2-36] L. Lai, W. J. Zeng, X. Z. Fu, R. Sun, R. Z. Du, “Annealing effect on the electrical properties and microstructure of embedded Ni-Cr thin film resistor, ” Journal of Alloys and Compounds, vol. 538, pp. 125-130, 2012.
[4-1] P. L. Kirby, “Applications of resistive thin films in electronics,” Thin Solid Films 50, 211 (1978).
[4-2] Y. Q. Zhang, X. P. Dong, J. S. Wu, “ Microstructure and electrical characteristics of Cr-Si-Ni films deposited on glass and Si (100) substrates by RF magnetron sputtering,” Materials Science and Engineering B. 113, 154 (2004).
[4-3] Y. Sato, M. Watanabe, S. Sato, “Electrical properties of Ni-Cr-N thin films deposited by multitarget reactive sputtering,” Jpn. J. Appl. Phys. 40, 5091 (2001).
[4-4] N. M. Phuong, D. J. Kim, B. D. Kang, S. G. Yoon, “Strcucture and electrical properties of NiCr thin films annealed at various temperature in vacuum and a nitrogen ambient for π-type attenuator applications,” Journal of Electrochemical Society., 153, 660 (2006).
[4-5] F. Wu, A. W. McLaurin, K. E. Henson, D. G. Managhan, S. L. Thomasson, “ The effects of the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films : part I,” Thin Solid Films. 332, 418 (1998).
[4-6] M. Danisman, N. Cansever, “Effect of Cr content on mechanical and electrical properties of Ni-Cr thin films,” Journal of Alloy sand Compounds. 493, 649 (2010).
[4-7] I. H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, “The electromechanical behavior of nichrome (80/20 wt.%) film,” Thin Solid Film. 433, 337 (2003).
[4-8] L. X. Zhao, G. D. Shen, G. Gao, C. Xu, J. Y. Du, D. S. Zou, J. Z. Chen, “The resistance characteristics of the Ni-Cr thin films and their influence on the integrated circuits,” IEEE. 1998
[4-9] B. L. Lee, S. W. Lee, P. K. Shin, “Precision thin film resistors based on Ni-Cr quinternary alloy thin films prepared by magnetron sputtering technique,” Japanese Journal of Applied Physics. 48, 055502 (2009)
[4-10] B. J. Lee, B. H. Lee, D. C. Lee, “Quaternary alloy films for the thin film resistors,” Jpn. J. Appl. Phys. 42, 1405 (2003).
[4-11] P. Steinmann, S. M .Jacobsen, R. Higgins, “Controlling the TCR of thin film resistors, ” IEEE.
[4-12] B. J. Lee, P. K. Shin, “Fabrication and characterization of Ni-Cr alloy thin films for application to precision thin film resistors,” Journal of Electrical Engineering & Technology. 2, 525 (2007).
[4-13] L. F. Lai, X. S. Su, X. Z. Fu, R. Sun, C. P. Wong, “The microstructure and properties of C W co-doped NiCr embedded thin film resistors,” Surface and Coating Technology. 259, 759 (2014)
[4-14] E. H. Sondheimer, “The mean free path of electrons in metals,” Advances in Physics. 50, 499 (2001)
[4-15] Y. Q. Zhang, X. P. Dong, J. S. Wu, “Environmental effects on electrical properties of Cr-Si-Ni resistive films deposited by magnetron sputtering,” Materials Science and Engineering B. 122, 121 (2005).
[4-16] L. Toth, A. Barna, P. B. Barna, J. Szatmari, “On the failure mechanism of NiCr thin film resistors under damp heat, steady state tests,” Vacuum. 33, 53 (1983)
[4-17] X. U. Wang, Z. S. Zhan g, T. Bai, Z. G. Liu, “Thin film chip resistors with high resistance and low temperature coefficient of reistance,” Trans. Tianjin Univ. 16, 348 (2010).
[4-18] J. J. Van Den Broek, J. J. T.M. Donkers, R. A. F. Van Der RIJT, J. T. M. Janssen, “Metal film precision resistors: resistive metal films and a new resistor concept,” Philips J. Res. 51, 429 (1998).
[5-1] N. C. Chuang, J. T. Lin, H. R. Chen, “TCR Control of Ni-Cr Resistive Film Deposited by DC Magnetron Sputtering,” Vacuum 119, 200 (2015)
[5-2] V. Petley, S. Sathishkumar, K. H. Thulasi Raman, G. Mohan Rao, “Microstructural and mechanical characteristics of Ni–Cr thin films,”Mater. Res. Bull. 66, 59 (2015)
[5-3] Y. Sato, M. Watanabe, S. Sato, “Electrical properties of NiCr-N thin film deposited by multi-target reactive sputtering,” Jpn. J. Appl. Phys. 40, 5091 (2001).
[5-4] M. Danisman, N. Cansever, “Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance,” J. Alloys Compd. 493, 649 (2010).
[5-5] I. H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, “The electromechanical behavior of nichrome (80/20 wt.%) film,” Thin Solid Films. 433, 337 (2003).
[5-6] L. X. Zhao, G. D. Shen, G. Gao, C. Xu, J. Y. Du, D. S. Zou, J. Z. Chen,“Resistance characteristics of the Ni-Cr thin films and their influence on the integrated circuits,” Proc. Solid-State and Integrated Circuit Technology, 1998, p. 123.
[5-7] B. L. Lee, S. W. Lee, P. K. Shin, “Precision thin film resistors based on Ni-Cr quinternary alloy thin film prepared by magnetron sputtering technique,” Jpn. J. Appl. Phys. 48, 055502 (2009)
[5-8] B. J. Lee, B. H. Lee, D. C. Lee, “Quaternary alloy films for thin film resistors,” Jpn. J. Appl. Phys. 42, 1405 (2003).
[5-9] P. Steinmann, S. M .Jacobsen, R. Higgins,“Controlling the TCR of thin film resistors, ” Proc. Solid-State Device Research Conference, 2000, p. 452.
[5-10] B. J. Lee, P. K. Shin, “Fabrication and characteristics of Ni-Cr alloy thin films for application to precision thin film resistors,” J. Electr. Eng. Technol. 2, 525 (2007).
[5-11] L. F. Lai, W. J. Zeng, X. Z. Fu, R. Sun, R. X. Du, “Optimization of sputtering parameters for Ni-Cr alloy deposition on copper foil as embedded thin film resistor,” Surf. Coatings Technol. 218, 80 (2013)
[5-12] L. F. Lai, X. S. Su, X. Z. Fu, R. Sun, C. P. Wong, “The microstructure and properties of C and W co-doped NiCr embedded thin film resistors,” Surf. Coatings Technol. 259, 759 (2014)
[5-13] L. Lai, W. Zeng, X. Z. Fu, R. Sun, R. X. Du, “Annealing effect on the electrical properties and microstructure of embedded Ni-Cr thin film resistor,” J. Alloys Compd. 538, 125 (2012)
[5-14] J. J. Van Den Broek, J. J. T. M. Donkers, R. A. F. Van Der Rijt, J. T. M. Janssen, “Metal film precision resistors: resistive metal films and an new resistor concept,” Philips J. Res. 51, 429 (1998)
[5-15] J. C. Rolke, “Nichrome thin film technology and its application,” Electrocomponent Sci. Technol. 9, 51 (1981)
[5-16] X. Y. Wang, Z. S. Zhang, T. Bai, “Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance,” Mater. Des. 31, 1302 (2010)
[5-17] M. A. Bayne, “Al-doped Ni-Cr for temperature coefficient of resistance control in hybrid thin-film resistors,” J. Vac.Sci. Technol., A 4, 3142 (1986)
[5-18] E. Schippel, “Properties of evaporated Ni-Cr films with an aluminum content of about 50%,” Thin Solid Films 123, 57 (1985)
[5-19] E. Schippel, “Ternary alloy films of Ni-Cr-Al for thin film resistors,” Thin Solid Films 146, 133 (1987)
[5-20] E. Schippel, “Structure of vacuum-deposited thick films Ni Cr Al,” Thin Solid Films 120, 69 (1984)
[5-21] X. P. Dong, J. S. Wu, “The role of aluminum in the crystallization of Cr-Si-Ni resistive films,” Mater. Sci. Eng. A 339, 297 (2003)
[5-22] T. C. Huang, J. K. Howard, “Characterization of Ni-Cr thin films by X-ray analysis,” Thin Solid Films 148, 209 (1987).
[5-23] E. A. Branders, Smithell’s Metal Reference Book (Butterworth & Co. Ltd., London, 1983).
[5-24] S. Petrovic, N. Bundaleski, M. Radovic, Z. Ristic, G. Gligoric, D. Perusko, M. Mitric, B. Pracek, A. Zalar, Z. Rakocevic, “Surface composition and structure of Ni-Cr sputtered coatings exposed in air at room temperature,” Nucl. Instrum. Methods Phys. Res. Sect. B 256, 368 (2007)
[5-25] G. B. Hoflund, W. S. Epling, “Oxidation study of a polycrystalline Ni/Cr alloy: room-temperature exposure to O2,” Thin Solid Films 307, 126 (1997)
[5-26] G. Nocerino, K. E. Singer, “Resistance stabilization of Ni-Cr films by surface oxide formation,” J. Vac. Sci. Technol. 16, 147 (1979)
[5-27] L. I. Belic, K. Pozun, M. Remskar, “AES, AFM and TEM studies of NiCr thin films for capacitive humidity sensors,” Thin Solid Films 317, 173 (1998)
[5-28] H. Bartuch, H. Dintner, A. Nimmrichter, “Aging model of reactively deposited thin Ni Cr films,” Thin Solid Films 116, 211 (1984)
[5-29] I. E. Klein, M. Hershkovich, I. A. Goldberg, “The mechanism of oxidation of Ni-Cr films,” Microelectron. J. 19, 17 (1989)
[5-30] N. M. Phuong, D. J. Kim, B. D. Kang, C. S. Kim, S. G. Yoon, “Effect of chromium concentration on the electrical properties of NiCr thin film resistor deposited at room temperature by magnetron cosputtering technique,” J. Electrochem. Soc. 153, 27 (2006)
[6-1] P. L. Kirby, “Application of resistive thin films in electronics,” Thin Solid Films, vol. 50, pp. 211-221, 1978.
[6-2] Y. Q. Zhang, X. P. Dong, J. S. Wu, “Microstructure and electrical characteristics of Cr-Si-Ni films deposited on glass and Si (100) substrate by RF magnetron sputtering,” Materials Science and Engineering B, vol. 113, pp. 154-160, 2004.
[6-3] Y. Sato, M. Watanabe, S. Sato, “Electrical properties of Ni-Cr-N thin films deposited by multitarget reactive sputtering,” Japanese Journal of Applied Physics, vol. 40, pp. 5091-5094, 2001.
[6-4] N. M. Phuong, D. J. Kim, B. D. Kang, S. G. Yoon, “Structural and electrical properties of NiCr thin films annealed at various temperature in a vacuum and a nitrogen ambient for Π-type attenuator application,” Journal of Electrochemical Society, vol. 153, pp. 660-663, 2006.
[6-5] F. Wu, A. W. McLaurin, K. E. Henson, D. G. Managhan, S. L. Thomasson, “The effects of the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films: part Ι,”Thin Solid Films, vol. 332, pp. 418-422, 1998.
[6-6] M. Danisman, N. Cansever, “Effect of Cr content on mechanical and electrical properties of Ni-Cr thin films,” Journal of Alloy and Compounds, vol. 493, pp. 649-653, 2010.
[6-7] I. H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, “The electromechanical behavior of nichrome (80/20 wt %) film,” Thin Solid Films, vol. 433, pp. 337-343, 2003.
[6-8] L. X. Zhao, G. D. Shen, G. Gao, C. Xu, J. Y. Du, D. S. Zou, J. Z. Chen, “The resistance characteristics of the Ni-Cr thin films and their influence on the integrated circuits,” Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference on Beijing, pp. 123-126, 1998.
[6-9] B. L. Lee, S. W. Lee, P. K. Shin, “Precision thin film resistors based on Ni-Cr quinternary alloy thin films prepared by magnetron sputtering technique,” Japanese Journal of Applied Physics, vol. 48, pp. 055502, 2009.
[6-10] L. F. Lai, X. S. Su, X. Z. Fu, R. Sun, C. P. Wong, “The microstructure and properties of C and W co-doped NiCr embedded thin film resistors,” Surface and Coating Technology, vol. 259, pp.759-766, 2014.
[6-11] E. H. Sondheimer, “The mean free path of electrons in metals,” Advances in Physics, vol. 50, pp. 499-537, 2001.
[6-12] A. F. Mayadas, M. Shatzers, “Electrical-Resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Physical Review B, vol. 1, pp. 1382-1839, 1970.
[6-13] Yoshikatsu Namba, “Resistivity and temperature coefficient of thin metal films with rough surface,” Japanese Journal of Applied Physics, vol. 9, pp. 1326-1329, 1970.
[6-14] H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Murarka, G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films,” Thin Solid Films, vol. 384, pp. 151-156, 2001.
[6-15] M. Birkett, “Optimisation of the performance characteristics of Cu-Al-Mo thin film resistors,” 2009.
[6-16] N. C. Chuang, J. T. Lin, H. R. Chen, “TCR control of Ni-Cr resistive film deposited by DC magnetron sputtering,” Vacuum, vol. 119, pp. 200-203, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code