Responsive image
博碩士論文 etd-0803117-212649 詳細資訊
Title page for etd-0803117-212649
論文名稱
Title
工業用PET聚脂基觸控薄膜於溫度、離子濃度、酸鹼度檢測及其製程技術開發
Temperature, Ionic Strength and pH Detections Utilizing Industrial PET Touch Panel Film and Its Manufacturing Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-09-04
關鍵字
Keywords
離子感測場效電晶體、離子濃度感測、雷射加工、溫度感測、酸鹼感測
ISFET, pH meter, ion conductivity, touch panel film, temperature sensor
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
本研究提出使用高穩定銦錫氧化觸控薄膜應用於溫度、酸鹼度及電導度三者特性開發與量測,改良前人穩定性不高的濕式王水蝕刻製程,採用快速雷雕取代,在酸鹼感測晶片上,使用雷射加工的方式,定義出溫度及電導度的電極圖形,此製程不僅大幅縮短晶片製程時間,也提高晶片加工後電極與電極間絕緣穩定性,使整體晶片可微小化。晶片後端量測架構中,酸鹼度感測部份,改良前人酸鹼量測中延伸式閘極場效電晶體(Extended-Gate Field Effect Transistor)架構,使用經過挑選的市售電晶體,搭配本研究開發穩定I - V轉換電路,得以作為穩定後端特性量測。溫度及電導度部份,連接市售電錶作為特性量測。在晶片連結部份,本研究使用6 pin軟性電路板(Flexible Printed Circuit,FPC)連接器作為電路與晶片電極連接橋梁,與其它市售腳位較平坦的連接器相比,FPC連接器接腳相對較立體,可以與感測晶片緊密接觸。且連接器可插拔特性,適合當薄膜長期量測損壞時,可迅速取下更換,成為一個多功能晶片可拋式感測器。量測結果顯示,微小化感測晶片,酸鹼感測範圍仍可達pH3 – pH13,且面積在19.5 ~ 52.0 mm2 變異量<8%及流動測試在100 ~ 500轉(Revolution(s) Per Minute, rpm)變異量< 4 %。溫度部份,水溫約每上升1oC ,感測薄膜的電阻大約會上升2 Ω,且不同初始電阻具有相同溫度電阻特性。電導度部份,可明顯區分不同水質電導度。雷射穩定度部份,利用雷射加工製作20片不同晶片,在相同酸鹼下,晶片變異量小於7%。最後,收集9位測試者,共計10個尿液樣本,成功歸納出飲食與尿液酸鹼及離子濃度關係。由一系列研究結果,驗證以此方式加工開發出的多重微型感測晶片,具有良好的穩定性,對尿液也具可進行實際感測,未來可將朝拋棄式及結合生理監控系統方向發展。
Abstract
This thesis present the fast multiple pH, temperature and conductivity sensors utilizing full ITO as the sensing materials. Instead of wet chemical etching, CO2 laser was used to direct ablate the PET layer of the touch panel film (TPF) and defined the pattern of the sensing electrodes. The energetic laser spots ablate the PET layer such that the electrical insulation could be achieved without using wet chemical etching. Laser machining improve stability and insulation for the sensing electrodes for the sensing chip even more the time for the process can be faster. Therefore, the full ITO-based electrodes for temperature, pH and ionic strength can be easily produced and low-cost. In the pH sensing structure, the commercial CMOS IC is used and replaced the extending gate field effect transistor in the previous research to improve stable and high-sensitivity measurement. In addition, the commercial meter was used for measuring the properties of temperature and conductivity sensors. Six pin Flexible Printed Circuit(FPC) slot with three-dimensional structure to make better connect between chip and circuit. As the results, the minimize ITO multi-sensor exhibits great sensing performance for detecting temperature (2 Ω/ oC), pH value (pH3 - pH13 with rapid response time <1 S, low sensing area effect < 8% between 19.5-52.0 mm2 and effect of the flow rate is less than 4%), and nice distinction for different water conductivity. The results for 20 chips in different pH solution testing is below 7%. Finally, 10 urine samples from 9 students showed the strong connection between meals and urine. The full ITO multi-sensor has shown its potential for developing disposable water and urine sensors. It is also a good candidate to develop disposable and physiological sensor.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 x
簡寫表 xi
第一章 緒論 1
1-1 研究背景 1
1-2人體生理學 2
1.2.1 人體腎臟 2
1.2.2 尿液酸鹼 5
1-3感測器 7
1.3.1離子場效電晶體感測器 8
1.3.2微奈米感測器 10
1-4 觸控薄膜發展與應用 12
1-5 研究動機與目的 14
1-6論文架構 14
第二章 材料特性與理論 16
2-1 ITO導電薄膜材料製備 16
2-2實驗系統量測原理 17
2-2-1 電雙層與吸附鍵結分析原理 17
2.2.2 酸鹼感測器原理 20
2.2.3 溫度感測器種類與原理 21
2.2.4離子感測器種類與原理 22
第三章 晶片設計與實驗架構 24
3.1感測晶片加工製程 24
3.1.1感測晶片設計 24
3.1.2晶片加工製程 25
3.2 實驗架構 27
3.2.1 酸鹼區量測系統架設 27
3.2.2溫度區量測系統架設 28
3.2.3 離子濃度區量測系統架設 29
第四章 結果與討論 30
4-1 晶片製程分析 31
4.1.1雷射加工結果分析 31
4.1.2晶片量測分析 34
4-2酸鹼量測 35
4.2.1 電晶體特性曲線 35
4.2.2 穩定性分析 37
4.2.3不同感測面積探討 38
4.2.4不同參考電極電壓分析 40
4.2.5量測系統靈敏度分析 41
4.2.6 重覆性分析 42
4.2.7 酸鹼度與溫度關係 44
4.2.8酸鹼與流速關係 44
4-3溫度電阻量測 45
4-4離子濃度量測 46
4.4.1離子濃度回覆性測試 46
4.4.2不同水質電導度實際量測 47
4-5尿液實測 48
第五章 結論與未來展望 51
5-1 結論 51
5-2 未來研究方向 53
參考文獻 54
自述 62
參考文獻 References
[1] 世界衛生組織, http://www.who.int/en/
[2] 腎臟本身的構造, https://zh.wikipedia.org/wiki/腎
[3] 腎元, https://zh.wikipedia.org
[4] 劉雪娥, 胡月娟, 尹裕君, 李和惠, 周守民, 成人內外科護理, 1997.
[5] 呼吸與排泄, http://www.phyworld.idv.tw
[6] 黃基礎, 史金燾, 施河, 人體生理學, 藝軒圖書出版社, 2002.
[7] J. Heng, 人體自然醫學,
http://simplenaturalhealing.blogspot.tw/2013/
[8] R. O. Young and S. R. Young, The pH Miracle: Balance your Diet, reclaim your health. Hachette UK, 2008.
[9] L. Chafe, M. Gault, "First morning urine pH in the diagnosis of renal tubular acidosis with nephrolithiasis," Clinical nephrology, vol. 41, no. 3, pp. 159-162, 1994.
[10] 解讀感測器的研發與應用趨勢, http://www.teema.org.tw
[11] K. D. Wise, J. B. Angell, A. Starr, "An integrated-circuit approach to extracellular microelectrodes," IEEE Transactions on Biomedical Engineering, no. 3, pp. 238-247, 1970.
[12] Z. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, A. Plantier, "K+-ISFET type microsensors fabricated by ion implantation," Materials chemistry and physics, vol. 48, no. 1, pp. 56-59, 1997.
[13] J. A. Brunink, J. R. Haak, J. G. Bomer, D. N. Reinhoudt, M. A. McKervey, S. J. Harris, "Chemically modified field-effect transistors; a sodium ion selective sensor based on calix arene receptor molecules," Analytica chimica acta, vol. 254, no. 1-2, pp. 75-80, 1991.
[14] S. K. Lee, Y. S. Sohn, S. Y. Choi, "Fabrication Characteristics of Al2O3 pH-Ion Sensitive Field Effect Transistor Fabricated Using Atomic Layer Deposition and Sputter," Sensor Letters, vol. 9, no. 1, pp. 3-6, 2011.
[15] L. Bousse, H. Van Den Vlekkert, N. De Rooij, "Hysteresis in Al2O3-gate ISFETs," Sensors and Actuators B: Chemical, vol. 2, no. 2, pp. 103-110, 1990.
[16] S.-K. Lee, Y.-S. Sohn, S.-Y. Choi, "Fabrication characteristics of Al2O3 pH-ion sensitive field effect transistor fabricated using atomic layer deposition and sputter," Sensor Letters, vol. 9, no. 1, pp. 3-6, 2011.
[17] L. Bousse , P. Bergveld, "The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs," Sensors and Actuators, vol. 6, no. 1, pp. 65-78, 1984.
[18] S. Mohri, J. Shimizu,N. Goda,T. Miyasaka, A. Fujita, M. Nakamura,F. Kajiya, "Measurements of CO 2, lactic acid and sodium bicarbonate secreted by cultured cells using a flow-through type pH/CO2 sensor system based on ISFET," Sensors and Actuators B: Chemical, vol. 115, no. 1, pp. 519-525, 2006.
[19] P. Bergveld, "The impact of MOSFET-based sensors," Sensors and Actuators, vol. 8, no. 2, pp. 109-127, 1985.
[20] P. Bergveld, "Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years," Sensors and Actuators B-Chemical, vol. 88, no. 1, pp. 1-20, 2003.
[21] M. Yuqing, G. Jianguo, C. Jianrong, "Ion sensitive field effect transducer-based biosensors," Biotechnol Adv, vol. 21, no. 6, pp. 527-34, 2003.
[22] C. Cané, A. Götz ,A. Merlos, I. Gracia,A. Errachid, P. Losantos, E. Lora-Tamayo, "Multilayer ISFET membranes for microsystems applications," Sensors and Actuators B: Chemical, vol. 35, no. 1-3, pp. 136-140, 1996.
[23] E. Mohabbati-Kalejahi, V. Azimirad, M. Bahrami, A. Ganbari, "A review on creatinine measurement techniques," Talanta, vol. 97, pp. 1-8, 2012.
[24] B. Premanode , C. Toumazou, "A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis," Sensors and Actuators B: Chemical, vol. 120, no. 2, pp. 732-735, 2007.
[25] J. Vanderspiegel, I. Lauks, P. Chan, D. Babic, "The Extended Gate Chemically Sensitive Field-Effect Transistor as Multi-Species Microprobe," Sensors and Actuators, vol. 4, no. 2, pp. 291-298, 1983.
[26] J. R. North, "Immunosensors: antibody-based biosensors," Trends in Biotechnology, vol. 3, no. 7, pp. 180-186, 1985.
[27] R. F. Taylor, I. G. Marenchic, R. H. Spencer, "Antibody-and receptor-based biosensors for detection and process control," Analytica chimica acta, vol. 249, no. 1, pp. 67-70, 1991.
[28] C. S. Lee, S. K. Kim, M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors, vol. 9, no. 9, pp. 7111-31, 2009.
[29] M. Zayats, A. B. Kharitonov, E. Katz, A. F. Bückmann, I. Willner, "An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor," Biosensors and Bioelectronics, vol. 15, no. 11, pp. 671-680, 2000.
[30] L. Slade, H. Levine, D. S. Reid, "Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety," Critical Reviews in Food Science & Nutrition, vol. 30, no. 2-3, pp. 115-360, 1991.
[31] D. Bánáti, "The EU and candidate countries: How to cope with food safety policies?," Food Control, vol. 14, no. 2, pp. 89-93, 2003.
[32] P. Ryan, E. Delhaize, D. Jones, "Function and mechanism of organic anion exudation from plant roots," Annual review of plant biology, vol. 52, no. 1, pp. 527-560, 2001.
[33] M. Miragliaa, K.G. Berdalb, C. Breraa, P. Corbisierc, A. Holst-Jensenb, E.J. Kokd, H.J.P. Marvind, H. Schimmelc, J. Rentsche. J.P.P.F. van Ried, J. Zagonf, "Detection and traceability of genetically modified organisms in the food production chain," Food and Chemical Toxicology, vol. 42, no. 7, pp. 1157-1180, 2004.
[34] N. Wang, N. Zhang, M. Wang, "Wireless sensors in agriculture and food industry—Recent development and future perspective," Computers and electronics in agriculture, vol. 50, no. 1, pp. 1-14, 2006.
[35] A. Warrick, W. Gardner, "Crop yield as affected by spatial variations of soil and irrigation," Water Resources Research, vol. 19, no. 1, pp. 181-186, 1983.
[36] K. Kawashima, M. Futagawa, Y. Ban, Y. Asano, K. Sawada, "Measurement of electrical conductivity into tomato cultivation beds using small insertion type electrical conductivity sensor designed for agriculture," IEEJ Transactions on Sensors and Micromachines, vol. 131, pp. 211-217, 2011.
[37] T. Matsuo, M. Esashi, "Methods of Isfet Fabrication," Sensors and Actuators, vol. 1, no. 1, pp. 77-96, 1981.
[38] C.-E. Lue, C.-S. Lai, I. Wang, C.-M. Yang, "Sensitivity of trapping effect on Si3N4 sensing membrane for ion sensitive field effect transistor/reference field effect transistor pair application," Sensor Letters, vol. 8, no. 5, pp. 725-729, 2010.
[39] M. Futagawa, T. Iwasaki, H. Murata, M. Ishida, K. Sawada, "A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture," Sensors, vol. 12, no. 6, pp. 8338-54, 2012.
[40] Y. C. Wu, S. J. Wu, C. H. Lin, "High Performance EGFET-Based pH Sensor Utilizing Low-Cost Industrial-Grade Touch Panel Film as the Gate Structure," Ieee Sensors Journal, vol. 15, no. 11, pp. 6279-6286, Nov 2015.
[41] Y.-C. Wu, S.-J. Wu, C.-H. Lin, "Mass-produced polyethylene-terephthalate film coated with tantalum pentoxide for pH measurement under ISFET detection configuration," Microsystem Technologies, 2015.
[42] 吳永成, "觸控薄膜適用於延伸閘極酸鹼值感測器之研究," 中山大學機械與機電工程學系研究所學位論文, pp. 1-107, 2015.
[43] 吳尚璟, "以觸控膜為基材之延伸閘極場效應電晶體應用於水中氫離子濃度感測," 中山大學機械與機電工程學系研究所學位論文, pp. 1-103, 2015.
[44] N. C. S. Vieira, E. G. R. Fernandes, A. A. A. de Queiroz, F. E. G. Guimaraes, V. Zucolotto, "Indium Tin Oxide Synthesized by a Low Cost Route as SEGFET pH Sensor," Materials Research-Ibero-American Journal of Materials, vol. 16, no. 5, pp. 1156-1160, 2013.
[45] 柯坤昇, 李茂順, 紀欽豪, 吳漢斌, "人性化介面設計-觸控面板的發展概況,"高雄應用科技大學, p. 4, 2008.
[46] H. Ko, W.-P. Tai, K.-C. Kim, S.-H. Kim, S.-J. Suh, Y.-S. Kim, "Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering," Journal of Crystal Growth, vol. 277, no. 1, pp. 352-358, 2005.
[47] R. Hermann, G. Braüer, "DC and RF-magnetron sputtering," and J. Becker,“Ion Beam Sputtering,” Handbook of Optical Properties, vol. 1, pp. 135-212, 1995.
[48] H. Dong, M.-k. Li, C.-s. Liu, Q. Fu, N. Lu, X. Fan, "Preparation of AlN films by middle frequency pulsed magnetron sputtering," Wuhan Daxue Xuebao, vol. 48, no. 3, pp. 339-342, 2002.
[49] P. Carcia, R. McLean, M. Reilly, G. Nunes Jr, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, 2003.
[50] L. L. Zhang , X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
[51] D. E. Yates, S. Levine, T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
[52] F. Belhachemi, S. Rael, B. Davat, "A physical based model of power electric double-layer supercapacitors," in Industry Applications Conference, vol. 5, pp. 3069-3076, 2000
[53] O. Stern, "The theory of the electrolytic double-layer," Z. Elektrochem, vol. 30, no. 508, pp. 1014-1020, 1924.
[54] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity," Chemical reviews, vol. 41, no. 3, pp. 441-501, 1947.
[55] R. G. Bates , A. K. Vijh, "Determination of pH: theory and practice," Journal of The Electrochemical Society, vol. 120, no. 8, pp. 263C-263C, 1973.
[56] 行政院環保署, 水資源監測,
https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER
[57] 科儀科技, 水的電導度和硬度簡易對照表, http://www.koy.com.tw/koy_old/2NEWS/PAPER/EC_HARD.HTM
[58] 鴻偉檢測有限公司, 水的電導度與TDS, http://www.homewell.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.116.183
論文開放下載的時間是 校外不公開

Your IP address is 18.217.116.183
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code