Responsive image
博碩士論文 etd-0803118-064145 詳細資訊
Title page for etd-0803118-064145
論文名稱
Title
奈米尺度之拉伸試驗對氧化鋅單晶的機械性質影響與其尺寸效應
Mechanical Behavior and Size Effect of Zinc Oxide under Nano-Scale Tension Test
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-09-03
關鍵字
Keywords
氧化鋅、尺寸效應、變形機制、微米壓縮、奈米拉伸
ZnO, nano-tension, Sample size effect, microcompression, deformation mechenism
統計
Statistics
本論文已被瀏覽 5665 次,被下載 18
The thesis/dissertation has been browsed 5665 times, has been downloaded 18 times.
中文摘要
近年來奈米科技與半導體科學的一個重要議題就是材料的尺寸效應,許多的報告指出,奈米級材料與微米級或一般塊材間相比,有著獨特的性質,此尺寸效應不僅有應用奈米結晶材料上,也可能在奈米結構的材料上。奈米結構材料包含,奈米線材、奈米棒、奈米顆粒以及任其外型大小相近於奈米等級者。從Uchic等前人的研究中可推測,若試片尺寸在製程上或設計上達奈米級大小,其機械性質將會有所影響,結構上亦有可能影響其他光電特性。

在這份研究中,包含極性面與非極性面之三組固定晶向的氧化鋅單晶之機械性質與變形行為已做了一系列測試。近100奈米級的c、a與m面氧化鋅奈米拉伸測試的降伏強度結果分別為8.5、7.6與3.8 GPa。並且共有四組從100奈米至400奈米級的拉伸試片尺寸設計。另外也分別做了三組不同晶向的微米柱壓縮測試來與奈米拉伸實驗進行比較,其c、a與m面氧化鋅的降伏強度分別是3.0、0.8與0.5 GPa。透過比較拉伸與壓縮的結果,其尺寸效應與變形機制可以被再次確認。

變形後的微結構與外觀透過多種不同技術,包含穿透式電子顯微鏡、掃描式電子顯微鏡和背向式電子繞射儀等儀器來鑑定。將以上結果列入分析並推論對於c面氧化鋅之最可能發生之滑移系統應是〈01-10〉{2-1-10},而對a和m面則應是 〈-1011〉{10-11}。
Abstract
Over recent years, one of important issues in nanotechnology and semiconductors science is the size effect of the materials. Many reports indicate that, nano-scaled materials have unique properties compared to micro- and macro-scaled materials. The size effect is not only applied for nanocrystalline materials but also for nano-structured materials. The nano-structured materials include nanowires, nanorods, nanopartical and appearance in nano-scale. From the research of Uchic et al., if the sample size decreases to nano-scale, the mechanical behaviors will increase.
In this study, the mechanical properties and deformation behaviors of ZnO single crystal on polar/nonpolar plane have been examined. The yield strength readings of the near 100 nm scaled nano-tension tests on the c, a and m plane ZnO single crystals are 8.5, 7.6 and 3.8 GPa, respectively. And there are four kinds of sample size designs for nano-tension from 100 nm scale to 400 nm scale. Besides the micro-compression tests are conducted for comparing the yield strengths with the results of the nano-tension tests. And the readings are 3.0, 0.8 and 0.5 GPa for c, a and m plane ZnO. Compared with compression and tension results, the size effect and the deformation mechanism can be reconfirmed. The deformed microstructure will be identified by using various techniques, including, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD). Taking all considerations for the higher Schmid factor and lower Burger’s vector, the most possible slip system should be 〈01-10〉{2-1-10} for c plane ZnO, and 〈-1011〉{10-11} for a and m plane
目次 Table of Contents
Contents

中文摘要 v
Abstract vi
Contents vii
Table List x
Figure List xi
Chapter 1. Introduction 1
1.1. Semiconductors 1
1.2. ZnO 2
1.3. Others wide bandgap semiconductors 3
1.4. Motivations 4
Chapter 2. Background and literature review 6
2.1. The direct and indirect bandgap of optoelectronic materials 6
2.2. The polar, semi-polar and non-polar plane for wurtzire structure 6
2.3. The methods of fabricating ZnO single crystal 7
2.3.1. Hydrothermal method 8
2.3.2. Molecular beam epitaxy (MBE) 9
2.3.3. Halide vapor phase epitaxy (HVPE) 9
2.3.4. Chemical-vapor deposition (CVD) 10
2.3.5. Metal-organic chemical-vapor deposition (MOCVD) 10
2.4. The structure of ZnO 11
2.4.1. The group theory of hexagonal systems 11
2.4.2. Characters of dislocations in the wurtzite structure 12
2.4.3. The piezoelectricity 13
2.5. The Electron backscattered diffraction (EBSD) 14
2.5.1. The advantages of the EBSD technique 15
2.5.2. The basic principles of a typical EBSD equipment 15
2.6. The principles of nanoindentation 17
2.6.1. The mechanical properties 17
2.6.2. Deformation mechanisms of ZnO 19
2.7. The feature of the focus ion beam (FIB) 20
2.7.1. FIB imaging 21
2.7.2. FIB milling 21
2.7.3. FIB deposition 22
2.7.4. TEM sample preparation 22
2.8. The sample size effect 23
2.8.1. The microcompression testing 24
2.8.2. The nano-tension testing 29
2.8.3. The Weibull-statistics 31
Chapter 3. Experimental procedures 33
3.1. Sample preparation 33
3.2. Crystallographic orientation identifications 33
3.2.1. X-ray diffraction (XRD) analyses 34
3.2.2. Electron backscattered diffraction (EBSD) analyses 34
3.3. The microcompression testing 34
3.3.1. Focus ion beam (FIB) milling method 35
3.3.2. The loading methology and parameters of testing 35
3.4. The Nano-tension testing 36
3.4.1. Focus ion beam (FIB) milling method 36
3.4.2. The loading methology and parameters of testing 36
3.5. Property measurements and analyses 37
3.5.1. Scanning electron microscopy (SEM) analyses 37
3.5.2. Transmission electron microscopy (TEM) analyses 37
3.5.3. TEM sample fabrication by using FIB 38
Chapter 4. Results and discussion 40
4.1. Crystallographic orientation identifications 40
4.1.1. X-ray diffraction (XRD) analyses 40
4.1.2. Electron backscattered diffraction (EBSD) analyses 40
4.2. Microcompression results 41
4.2.1. Scanning electron microscopy (SEM) results 44
4.2.2. Transmission electron microscopy (TEM) results 44
4.3. Nano-tension testing results 45
4.4. Sample size effect and orientation effect on ZnO 46
Chapter 5. Conclusions 49
References 50
Tables 57
Figures 63
參考文獻 References
[1] M. Riaz, A. Fulati, L. L. Yang, O. Nur, M. Willander, and P. Klason, Journal of Applied Physics, 2008, 104, p. 104306.
[2] J. G. Lu, P. C. Chang, and Z. Y. Fan, Materials Science and Engineering R, 2006, 52, p. 49.
[3] S. Gradečak, F. Qian, Y. Li, H. G. Park and C. M. Liebera, Applied Physics Letters, 2005, 87, p. 173111.
[4] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, Nature Materials, 2002, 1, pp. 106-110.
[5] R. A. Laudise and A. A. Ballman, Journal of Physical Chemistry, 1960, 64, p. 688.
[6] R. A. Laudise, E. D. Kolb, and A. J. Caporaso, Journal of The American Ceramic Society, 1964, 47, p. 9.
[7] E. D. Kolb and R. A. Laudise, Journal of The American Ceramic Society, 1966, 49, p. 302
[8] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Physical Review B, 2005, 72, p. 241305.
[9] A. Lusson, N. Haneche, C. Thiandoume, V. Sallet, and P. Galtier, Journal of Vacuum Science and Technology B, 2009, 27, p. 1755.
[10] J. -M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Deparis, C. Morhain, and B. Vinter. Applied Physics Letters, 2010, 97, p. 081903.
[11] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish and M. V. Swain, Applied Physics Letters, 2002, 80 (6), pp. 956-958.
[12] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A, Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, Journal of Applied Physics, 2005, 98, p. 041301
[13] J. E. Bradby, S. O. Kucheyev, J. S. Williams and C. Jagadish, Applied Physics Letters, 2002, 80 (24), pp. 4537-4539.
[14] S. Y. Kuan, J. C. Huang, Y. H. Chen, C. H. Chang, C. H. Hsieh, J. H. Wang, Y. C. Nian, S. P. Ju, T. G. Nieh, S. H. Chen and Y. M. Hwang, Materials Science and Engineering A, 2015, 646, p.135.
[15] J. Narayan, K. Dovidenko, A. K. Sharma and S. Oktyabrsky, Journal of Applied Physics, 1998, 84, p. 2597.
[16] C. H. Hong, D. Pavlidis, K. Hong and K. Wang, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 32, p. 69.
[17] F. M. Morales, D. Gonzalez, J.G. Lozano, R. Garcia, S. Hauguth-Frank, V. Lebedev, V. Cimalla and O. Ambacher, Acta Materialia, 2009, 57, pp. 5681-5692.
[18] Y. Taniyasu, M. Kasu and T. Makimoto, Nature, 2006, 441, p. 325.
[19] S. R. Jian, G.J. Chen, J. S. C. Jang and Y. S. Lai, Journal of Alloys and Compounds, 2010, 494, p. 219.
[20] H. Lahreche, P. Vennegues, M. Vaille, B. Beaumont, M. Laugt, P. Lorenzini and P. Gibart, Semiconductor Science and Technology, 1999, 14, L33-L36.
[21] Y. Z. Zhu, G. D. Chen, H. G. Ye, A. Walsh, C. Y. Moon and S. H. Wei, Physical Review B, 2008, 77, p. 245209.
[22] T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, Semiconductor Science and Technology, 2005, 20, S78-S91
[23] K. Takahashi, A. Yoshikawa and A. Sandhu, Wide Bandgap Semiconductors
[24] T. H. Sung, J. C. Huang, J. H. Hsu, S. R. Jian and T. G. Nieh, Applied Physics Letters, 2012, 100, p. 211903.
[25] T. H. Sung, J. C. Huang and H. C. Chen, Applied Physics Letters, 2013, 102, p. 241901.
[26] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, Journal of Applied Physics, 1994, 76, p. 1363.
[27] P. Misra, O. Brandt, H. T. Grahn, H. Teisseyre, M. Siekacz, C. Skierbiszewski and B. Lucznik, Applied Physics Letters, 2007, 91, p. 141903
[28] L. Beaur, T. Bretagnon, C. Brimont, T. Guillet, B. Gil, D. Tainoff, M. Teisseire and J. -M. Chauveau, Applied Physics Letters, 2011, 98, p. 101913.
[29] D. Schulz, S. Ganschow, D. Klimm, M. Neubert, M. Robberg, M. Schmidbauer and R. Fornari, Journal of Crystal Growth, 2006, 296, pp. 27-30.
[30] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito and T. Fukuda, Journal of Crystal Growth, 2004, 260, pp. 166-170.
[31] D. Schulz, S. Ganschow, D. Klimm and K. Struve, Journal of Crystal Growth, 2008, 310, pp. 1832-1835.
[32] K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semiconductor Science and Technology, 2005, 20, S49-S54.
[33] S. Baruah and J. Dutta, Science and Technology of Advanced Materials, 2009, 10, p. 013001.
[34] Y. W. Heo, D. P. Norton and S. J. Pearton, Journal of Applied Physics, 2005, 98, p. 073502.
[35] J. -M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain and B. Vinter, Semiconductor Science and Technology, 2008, 23, p.035005.
[36] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliandis and K. A. Jones, Applied Physics Letters, 1998, 73, p. 348.
[37] K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto and H. Yamamoto, Journal of Materials Chemistry, 2000, 10, pp. 969-972.
[38] N. Takahashi, M. Makino, T. Nakamura and H. Yamamoto, Chemistry of Materials, 2002, 14, pp. 3622-3624.
[39] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang and Y. Segawa, Thin Solid Films, 2003, 433, pp. 131-134.
[40] K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi and H. Watanabe, Journal of Crystal Growth, 2000, 214/215, pp. 77-80.
[41] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi and H. Watanabe, Journal of Crystal Growth, 2000, 221, pp. 431-434.
[42] M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, Thin Solid Films, 2002, 403-404, pp. 485-488.
[43] Y. Kashiwaba, K. Sugawara, K. Haga, H. Watanabe, B. P. Zhang and Y. Segawa, Thin Solid Films, 2002, 411, pp. 87-90.
[44] S. Sun, G. S. Tompa, C. Rice, X. W. Sun, Z. S. Lee, S. C. Lien, C. W. Huang, L. C. Cheng and Z. C. Feng, Thin Solid Films, 2008, 516, pp. 5571-5576.
[45] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction. 2003, Berlin: Springer.
[46] G. Springholz, N. Frank and G. Bauer, Thin Solid Films, 1995, 267, pp. 15-23.
[47] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications, N. J., 1999, 20.
[48] R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles, C. L. Engineering, Boston, 2009, 142.
[49] Z. Takkouk, N. Brihi, K. Guergouri and Y. Marfaing, Phisica B, 2005, 366, pp. 185-191.
[50] B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
[51] A. R. Hutson, Physical Review Letters, 1960, 4, pp. 505-507.
[52] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, Materials Science in Semiconductor Processing, 1999, 2, pp. 247-252.
[53] Z. L. Wang and J. Song, Science, 2006, 312, pp. 242-245.
[54] J. Goldstain, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, Kluwer Academic Press, New York Boston, 2003
[55] S. Nishikawa and S. Kikuchi, Nature, 1928, 121, p. 1019.
[56] Channel 5 User Manual, Oxford Instrument HKL, 2007
[57] W. C. Oliver and G. M. Pharr, Journal of Materials Research, 1992, 7, p.1564.
[58] W. G. Mao, Y. G. Shen and C. Lu, Journal of European Ceramic Society, 2011, 31, pp. 1865-1871.
[59] S. Basu and M. W. Barsoum, Journal of Materials Research, 2007, 22, pp. 2470-2477.
[60] S. Reyntjens and R. Puers, Journal of Micromechanics and Microengineering, 2001, 11, p. 287.
[61] D. Kiener, C. Motz, M. Rester, M. Jenko and G. Dehm, Materials Science and Engineering A, 2007, 459, p. 262.
[62] C. A. Volkert and A. M. Minor, MRS bulletin, 2007, 32, p. 389.
[63] J. Mayer, L. A. Giannuzzi, T. Kamino and J. Michael, MRS bulletin, 2007, 32, p. 400
[64] Yu. V. Milman, A. A. Golubenko and S. N. Dub, Acta Materialia, 2011, 59, p. 7480
[65] Q. Ma and D. R. Clarke, Journal of Materials Research., 1995, 10, pp. 853-863.
[66] W. D. Nix and H. J. Gao, Journal of Mechanics and Physics of Solids, 1998, 46, pp. 411-425.
[67] J. S. Stolken and A. G. Evans, Acta Materialia, 1998, 46, pp. 5109-5115.
[68] L. Nicola, E. Van der Giessen, A. Needleman, Journal of Applied Physics, 2003, 93, pp. 5920-5928.
[69] M. F. Horstemeyer, M. I. Baskes and S. J. Plimpton, Acta Materialia, 2001, 49, pp. 4363-4374.
[70] L. Zuo, A. H. W. Ngan, and G. P. Zheng, Physical Review Letters, 2005, 94, p. 095501.
[71] M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix, Science, 2004, 305, pp. 986-989.
[72] D. M. Dimiduk, M. D. Uchic and T. A. Parthasarathy, Acta Materialia, 2005, 53, p. 4065.
[73] J. R. Greer, W. C. Oliver and W. D. Nix, Acta Materialia, 2005, 53, pp. 1821-1830.
[74] X. D. Yan, M. Dickinson, J. P. Schirer, C. W. Zou and W. Gao, Journal of Applied Physics, 2010, 108, p. 056101.
[75] D. Kiener, W. Grosinger, G. Dehm and R. Pippan, Acta Materialia, 2008, 56, pp. 580-592.
[76] C. H. Hsieh, C. H. Chang, W. S. Chuang, X. Wang and J. C. Huang, Applied Surface Science, 2015, 256, p. 416.
[77] J. R. Greer and W. D. Nix, Physical Review B, 2006, 73, p. 245410.
[78] M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade and H. L. Fraser, Scripta Materialia, 2006, 54, p. 759.
[79] M. D. Uchic and D. M. Dimiduk, Materials Science and Engineering A, 2005, 400-401, p. 268.
[80] H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Materialia, 2006, 54, p.181.
[81] R. Saha and W. D. Nix, Acta Materialia, 2002, 50, p. 23.
[82] S. Chen, L. Liu and T. Wang, Surface and Coatings Technology, 2005, 191, p. 25.
[83] A. Reichardt, M. Ionescu, J. Davis, L. Edwards, R. P. Harrison, P. Hosemann and D. Bhattacharyya, Acta Materialia, 2015, 100, p. 147.
[84] W. J. Weibull, Journal of Applied Mechanics, 1951, 18, p. 293.
[85] M. Tiryakioglu, D. Hudak and G. Okten, Materials Science and Engineering A, 2009, 527, p. 397.
[86] W. F. Wu, Y. Li and C. A. Schuh, Philosophical Magazine, 2008, 88, p. 71.
[87] C. J. Lee, J. C. Huang and T. G. Nieh, Applied Physics Letters, 2007, 91, p. 161913.
[88] http://www.mtixtl.com/index.aspx
[89] R. M. Langford, A. K. Perford-Long, Journal of Vacuum Science and Technology A, 2001, 19, p. 2186.
[90] M. J. Buerger, X-Ray Crystallography, 1942, John. Wiley & Sons, New York.
[91] T. T. Zhu, A. J. Bushby and D. J. Dunstan, Materials Technology, 2008, 23 p. 193.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code