Responsive image
博碩士論文 etd-0803118-081441 詳細資訊
Title page for etd-0803118-081441
論文名稱
Title
結合奈米二氧化鈦光觸媒及臭氧氧化技術降解室內甲醛及油煙中TVOCs效率及反應機制探討
Mechanisms for Decomposition of Indoor Formaldehyde and TVOCs in Cooking Fumes by Combining Modified Nano-TiO2 Photocatalysts with Ozone Oxidation Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
171
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-09-03
關鍵字
Keywords
動力學模式、臭氧氧化、揮發性有機物(VOCs)、油煙及室內甲醛、改質光觸媒、降解效率、操作參數
Kinetic model, Decomposition efficiency, Operating parameters, Volatile organic compounds(VOCs), Cooking fume and indoor formaldehyde, Nano-sized photocatalyst, Ozone oxidation
統計
Statistics
本論文已被瀏覽 5641 次,被下載 1
The thesis/dissertation has been browsed 5641 times, has been downloaded 1 times.
中文摘要
餐飲油煙、室內傢俱及裝潢等都是室內揮發性有機物(VOCs)的來源之一。本研究結合奈米二氧化鈦(TiO2)光觸媒及臭氧氧化技術降解室內甲醛及油煙中揮發性有機物。利用連續式反應系統,以含浸法製備TiO2玻璃纖維濾網(FGF),模擬油煙中揮發性有機物之降解效率。油煙經過FGF處理後可提高TVOC的降解效率約10 %。TVOC在油煙中的分解效率,會隨著TVOC濃度的增加而降低,其中以100 ppm的TVOC分解效率(64 %)為最高。反應溫度與TVOC分解效率在64-68 %間亦有相似的趨勢。另臭氧濃度在1000 ppm時,對油煙中TVOC的分解較佳,臭氧氧化或近紫外光照射增加約34 %TVOC分解效率。O3+UV/TiO2和UV/TiO2+O3技術對TVOC分解效率分別達到75 %和94 %。在油煙中加入水經UV/TiO2+O3技術處理後,TVOC的最大分解效率降至79 %。以定性分析比較VOCs物種,發現UV/TiO2+O3技術確實能有效地分解油煙中VOCs。
本研究另行製備鐵改質和未改質的光觸媒(Fe/TiO2和TiO2),並進一步探討操作參數對甲醛分解效率的影響。金屬鐵摻雜光觸媒其粒徑為25-60 nm屬奈米級,分別測定1, 3、5% Fe/TiO2光觸媒的鐵摻雜量分別為1.2、3.1和4.7%,經紫外-可見光譜分析,Fe/TiO2的鐵摻雜量從0%增加到5%時有明顯的紅移效應。結合光觸媒和臭氧氧化兩個反應器之連續式反應系統,在不同操作參數下對Fe/TiO2光觸媒降解甲醛的能力。本研究所探討的六個操作參數包括甲醛濃度(0.15、0.30及0.45 ppm)、相對濕度(5、35及55 %)、光照(可見光、近紫外及紫外光)、反應溫度(25、30及35 ℃)、鐵摻雜量(1、3和5
Abstract
Chinese cooking fume is one of the sources of volatile organic compounds (VOCs) in the air. An innovative control technology combining photocatalytic degradation and ozone oxidation (UV/TiO2+O3) was developed to decompose VOCs in the cooking fume. Fiberglass filter (FGF) coated with TiO2 was prepared by an impregnation procedure. A continuous-flow reaction system was self-designed by combining photocatalysis with advanced ozone oxidation technique. By passing the simulated cooking fume through the FGF, the VOC decomposition efficiency in the cooking fume could be increased by about 10%. The decomposition efficiency of VOCs in the cooking fume increased and then decreased with the inlet VOC concentration. A maximum VOC decomposition efficiency of 64% was obtained at 100 ppm. Similar trend was observed for reaction temperature with the VOC decomposition efficiencies ranging from 64 to 68%. Moreover, injection ozone concentration had a positive effect on the decomposition of VOCs in the cooking fume for injection ozone concentration ≤1000 ppm and leveled off for injection ozone concentration >1000 ppm. About 34% of VOC decomposition efficiency could be achieved solely by ozone oxidation with or without near-UV irradiation. A maximum of 75% and 94% VOC decomposition efficiency could be achieved by O3+UV/TiO2 and UV/TiO2+O3 techniques, respectively. The maximum decomposition efficiencies of VOCs decreased to 79% for using UV/TiO2+O3 technique with adding water in the oil fume. Comparing the chromatographical species of VOCs in the oil fume before and after the decomposition of VOCs by using UV/TiO2+O3 technique, we found that both TVOC and VOC species in the oil fume were effectively decomposed.
Bench-scale experiments using iron modified and unmodified photocatalysts (Fe/TiO2 and TiO2) were conducted to compare their decomposition efficiencies of formaldehyde. The effects of operating parameters on the decomposition efficiency of formaldehyde were further investigated. The grain size of iron doped photocatalysts ranged from 25 to 60 nm. The iron doped content of 1, 3, and 5% Fe/TiO2 photocatalysts were measured as 1.2, 3.1, and 4.7%, respectively. The UV-visible analytical results showed that a significant red shift was observed while the iron doping content of Fe/TiO2 increased from 0 to 5%. Two continuous-flow reaction systems, the ozonolytic and the photocatalytic reactors, were combined in series to investigate their capability to decompose formaldehyde by Fe/TiO2 photocatalysts with operating parameters. Six operating parameters investigated in this study included the influent formaldehyde concentrations (0.15, 0.30, and 0.45 ppm), the relative humiditues (5, 35, and 55%), the irradiation of lights (visible, near-UV, and UV), the reaction temperatures (25, 30, and 35°C), the iron doping contents (1, 3, and 5% Fe/TiO2), and the injection ozone concentrations (2000 and 3000 ppb). The optimal operating parameters obtained in this study were the influent formaldehyde concentration of 0.15 ppm, the relative humidity of 5 %, the irradiation of UV light, the reaction temperature of 35°C, the iron doping content of 5% Fe/TiO2, and the injection ozone concentration of 3000 ppb. Overall, the decomposition efficiencies of formaldehyde for different decomposition techniques were ordered as UV/TiO2+O3 > O3+UV/TiO2 > UV/O3 ≈ O3. A maximum formaldehyde decomposition efficiency of 92% was obtained by using the UV/TiO2+O3 technology.
The removal of VOCs in the cooking fume and formaldehyde decomposition efficiency are pseudo first order reaction. The kinetic model simulation results showed that the reaction rate of TVOC and formaldehyde increased with influent TVOC concentration. However, when the influent TVOC concentration increased gradually to a critical concentration, due to the limitation of active sites on the photocatalyst surface, too many pollutant molecules can not occupy the surface sites of the photocatalyst, and the photocatalytic reaction can not be carried out. Therefore, when TVOC and formaldehyde concentrations were too high, the reaction rate tended to be low.
目次 Table of Contents
論文審定書...............................................................................................................i
摘要.........................................................................................................................ii
Abstract……............................................................................................................iv
Table of Content......................................................................................................vii
List of Tables……………………………………………………………………………...xi
List of Figures …………………………………………….…...……….………….…….xii
Chapter 1 Introduction……………………………..……..….………………………... 1
1.1 General Background Information...........……………..….…………................... 1
1.2 Objectives….......…………….……………….…...………................................. 3
Chapter 2 Literature Review…….......……………………..………..………….......... 5
2.1 Sources and Effects of VOCs.......................................................................... 5
2.2 Application of Photocatalytic Technology...................................................... 7
2.3 Types and Characteristics of Photocatalysts.................................................8
2.3.1 Types of photocatalysts............................................................................ 8
2.3.2 Structure and characteristics titanium dioxide (TiO2).............................. 11
2.3.3 Basic principle of photocatalytic reaction................................................ 13
2.3.4 Surface adsorption of photocatalyst......................................................... 17
2.3.5 Methods for preparing titanium dioxide................................................... 20
2.4 Parameters Affecting the Efficiency of Photocatalytic Reaction……................25
2.4.1 Concentration of reactants....................................................................... 25
2.4.2 Optical wavelength.................................................................................. 27
2.4.3 Water vapor content................................................................................. 29
2.4.4 Reaction temperature............................................................................... 30
2.5 Characteristics and Applications of Ozone.......................................................32
2.6 Principle of Photocatalytic Oxidation (PCO).....................................................33
2.7 Kinetic Model of Photocatalytic Reaction......................................................... 34
2.7.1 First-order reaction dynamic model......................................................... 34
2.7.2 Isothermal adsorption mode..................................................................... 36
2.7.3 Reaction dynamic model.......................................................................... 38
Chapter 3 Methodologies…………........................……………………….................44
3.1 Experimental Materials.....................................................................................44
3.2 Experimental Design…...……..................….……….........................................51
3.2.1 Photocatalytic and ozonolytic oxidation system.......................................51
3.2.2 Preparation of fiberglass filters coated with nano-sized TiO2 photocatalysts............................................................................................. 52
3.2.3 Preparation of Fe/TiO2….....................….................................................53
3.2.4 Characterization of Fe/TiO2…..................................................................54
3.3 PCO and Ozone Oxidation Reaction System (UV/TiO2+O3) ....................... 54
3.4 Formaldehyde Decomposition Experiments.................................................... 56
3.5 Operating Parameters...................................................................................... 57
Chapter 4 Removing Volatile Organic Compounds in Cooking Fume….………….58
4.1 Physical and Chemical Characteristics of TiO2 Photocatalysts....................... 58
4.2 Experiments for Removing VOCs in Oil Fume. .…...…….................................61
4.3 Effectiveness of Fiberglass Filter (FGF) ………………………………………... 65
4.4 Decomposition of VOCs in Oil Fume by Using PCO Technique……………… 66
4.4.1 Variation of VOC decomposition efficiency with injection VOC concentration…………………66
4.4.2 Variation of VOC decomposition efficiency with reaction temperature.. 69
4.5 Decomposition Efficiency of VOCs in Oil Fume by Using Ozone Oxidation Technique………………..........................................................................................72
4.5.1 Variation of VOC decomposition efficiency with injection ozone concentration………..............................................................................72
4.5.2 Decomposition efficiency of VOCs by using ozone oxidation technique with and without Near-UV irradiation…….............................................73
4.6 Decomposition of VOCs in Oil Fume by Using Combined PCO and Ozone Oxidation Techniques……75
4.6.1 Decomposition of VOCs in oil fume by using O3+UV/TiO2 technique……….............................75
4.6.2 Decomposition of VOCs in oil fume by using UV/TiO2+O3 technique……….............................77
4.6.3 Influence of water content on VOC decomposition efficiency by using UV/TiO2+O3 technique………................................................................79
4.6.4 Comparison of VOC decomposition efficiency by using different techniques……….................................................................................. 83
4.7 Analysis of VOC Species before and after UV/TiO2+O3 Oxidation Process…... 84
4.8 Kinetic Model of Photocatalytic Reaction............................................................ 87
Chapter 5 Decomposition of Formaldehyde by Combining Iron Modified Nano-TiO2 (Fe/TiO2) Photocatalytic Degradation with Ozone Oxidation……………………………………………………………………...95
5.1 Formaldehyde Decomposition Experiments…………..…………………..……....95
5.2 Physical and Chemical Characteristics of Fe/TiO2 Photocatalysts……..………95
5.3 Effects of Influent Formaldehyde Concentration……………..…………..….… 100
5.4 Effects of Relative Humidity (RH) …………..…………………………..…….. 102
5.5 Effects of Reaction Temperature……………………………….………..……... 104
5.6 Effects of Incident Light Wavelength…………………………….……..……... 105
5.7 Effects of Iron-doped Content of Fe/TiO2……………………...………..……... 107
5.8 Effects of Injection Ozone Concentration………………..……………..…….... 108
5.9 Photocatalytic Oxidation Combining Ozonation oxidation (UV/O3) for the Decomposition of Formaldehyde…………………………………………...…...109
5.9.1 Decomposition of formaldehyde by combining O3 and UV/TiO2 (O3 + UV/TiO2) ………………………110
5.9.2 Decomposition of formaldehyde by combining UV/TiO2 and O3 (UV/TiO2 + O3) ………………………112
5.10 Kinetic Model of Photocatalytic Reaction………………………………...…... 113
Chapter 6 Conclusions and Suggestions……………………………………………...119
6.1 Conclusions..………………………………………………...………….……… 119
6.2 Suggestions……………………...…………………….……………………...… 120
References……………………………………………………………….…….…………122
Appendixes A Calibration Report of Analytical Instruments……...………..……..…135
Appendixes B Original Data of Experiments………………….…….…………………138
參考文獻 References
Alberici, R.M., Canela, M.C., Eberlin, M.N., and Jardim, W.F. (2001). Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV-VIS. Appl. Catal. B: Environ., 30: 389-397.
Akhavan, O. (2009). Lasting antibacterial activities of AgTiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci., 336: 117-124.
Anderson, M.A., Yamazaki-Nishida, S., and Cervera-March, S. (1993). Photo-degradation of trichloroethylene in the gas phase using TiO2 porous ceramic membranes. Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier, Amsterdam, The Netherlands, 405-420.
Andrew, M. and Stephen, L.H. (1997). An Overview of Semiconductor Photocatalysis. J. Photochem. Photobiol., A: Chem., 108: 1-35.
Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y., Park, D.R.,Suzuki, Y., Koyano, K., and Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal. Today, 44: 327-332.
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., and Schiavello, M. (1999). Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Appl. Catal. B: Environ., 20: 15-27.
Atkinson, R., Tuazon, E.C., and Aschmann, S.M. (1995). Products of the gas-phase reactions of O3 with alkenes. Environ. Sci. Technol., 29 (7): 1860-1866.
BekbÖlet, M. (1997). Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E. coli. Water Sci. Technol., 35: 95-100.
Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and Romero, M. (1996). Photocatalyic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst. Catal. Today, 29: 437-442.
Brunauer, S., Emmett, P.H., and Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60: 309-319.
de Bruin, B.Y., Koistinen, K., Kephalopoulos, S., Geiss, O., Tirendi, S., and Kotzias, D. (2008). Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the european Union: Comparison of measured and modelled exposure data. Environ. Sci. Pollut. Res., 15: 417-430.
Cao, D., Schollmeyer, D., and Meier, H. (1999). Phenylethynyl and phenylethenylmetacyclophanes with π, π interactions. Eur. J. Org. Chem., 1999: 791-795.
Chai, M. and Pawliszyn, J. (1995). Analysis of environmental air samples by solid-phase microextraction and gas chromatography/Ion trap mass spectrometry. Environ. Sci. & Technol., 29: 693-701.
Charuwan, K., Kamolporn, A., Nat-a-nong, C., Kanokpun, A., Pasuree, R. and Virote, B. (2012). Photocatalytic of TiO2-SiO2 thin films Co-doped with Fe3+ and thio-urea in the degradation of formaldehyde by indoor and outdoor visible lights. Adv. Mater. Phys. and Chem., 2: 40-44.
Chen, W., Zhang, J.S., and Zhang, Z. (2005). Performance of air cleaners for removing multiple volatile organic compounds in indoor air. Build. Eng., 111: 1101-1114.
Chen, J.W., Wang, S.L., Hsieh, D.P., Yang, H.H., and Lee, H.L. (2012). Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbours of restaurants with cooking emissions. Sci. Total Environ., 417-418: 68-75.
Cheng, S., Wang, G., Lang, J., Wen, W., Wang, X., and Yao, S. (2016). Characterization of volatile organic compounds from different cooking emissions. Atmos. Environ., 145: 299-307.
Chin, P., Yang, L.P., and Ollis, D.F. (2006). Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor: Kinetic modeling. J. Catal., 237: 29-37.
Cui, T., Cheng, J.C., He, W.Q., Ren, P.F., Nie, L., Xu, D.Y., and Pan, T. (2015). Emission characteristics of VOCs from typical restaurants in Beijing. Environ. Sci., 36(5): 1523-1529 (in Chinese).
Darvishi, C. S., R., Rezaee, A., Safari, M., Khataee, A.R., and Karimi, B. (2015). Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin. Water Treat., 53:1-8.
Delphine, B., Pierre, M., Valérie, D., and Hervé, P. (2014). Formaldehyde emission behavior of building materials: On-site measurements and modeling approach to predict indoor air pollution. J. Hazard. Mater., 280: 164-173.
Esswein, E.J. and Boeniger, M.F. (1994). Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air. Appl. Occupational and Environ. Hygiene., 9: 139-146.
Falconer, J.L. and Magrini-Bair, K.A. (1998). Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2. J. Catal., 179: 171-178.
Freundlich, H. (1906). Über die adsorption in loesungen. Zeitschrift für Physikalische Chemie, 57 A:.385-470.
Fogler, H.S. (1999). Elements of Chemical Reaction Engineering, Third Ed., Prentice- Hall, New Jersey.
Franco, M., Chairez, I., Poznyak, T., and Poznyak, A. (2012). BTEX decomposition by ozone in gaseous phase. J. Environ. Manag., 95: S55-S60.
Fu, X., Clark, L.A., Yang, Q., and Anderson, M.A. (1996). Enhanced photocatalytic performance of titania-based binary metal oxide: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol., 30: 647-653.
Gao, E., Wang, W., Shang, M., and Xu, J. (2011). Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Chem. Phys., 13: 2887-2893.
Hines, A.L., Ghosh, T.K., Loyalka, S.K., and Warder, R.C. (1993). Indoor Air Quality and Control. Prentice-Hall, Englewood.
Ho, S.H., Cheng, Y., Bai, Y., Ho, K.F., Dai, W.T., Cao, J.J., Lee, S.C., Huang, Y., Ip, H.S., Deng, W.J., and Guo, W. (2015). Risk assessment of indoor formaldehyde and other carbonyls in campus environments in Northwestern China. Aerosol Air Qual. Res., 16: 1967–1980.
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95(1): 69-96.
Hong, W., Meng M., Xie, J., Gao, D., Zeng, Y., Ai, H., Chen, C., Huang, S., and Zhou, Z. (2017). Investigation of the pollution level and affecting factors of formaldehyde in typical public places in Guangxi, China. Aerosol Air Qual. Res., 17: 2816–2828.
Huang, J.R., Tan, X., Yu, T., Zhao, L., and Hu, W.L. (2014). Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 heterostructured nanotubes with dominant {001} face of anatase TiO2. Electrochim. Acta., 146: 278-287.
Huang, H., Ye, X., Huang, W., Chen, J., Xu, Y., Wu, M., Shao, Q., Peng, Z., Ou, G., Shi, J., Feng, X., Feng, Q., Huang, H., Hu, P., and Leung, D.Y.C. (2015a). Ozone catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: catalytic deactivation and its suppression. Chem. Eng. J., 264: 24-31.
Huang, H., Huang, H., Zhang, L., Hu, P., Ye, X., and Leung, D.Y.C. (2015b). Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals. Chem. Eng. J., 259: 534-541.
Hung, J. L. (2001). Effect of temperature and humidity on photocatalytic decomposition of benzene vapor. Institute of Environmental Engineering, National Sun Yat-Sen University, Master Thesis.
Huo, P., Yan, Y., Li, S., Li, H., and Huang, W. (2010). Preparation of poly-o-phenylenedi-amine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics. Appl. Surf. Sci., 256: 3380-3385.
Hussain, M., Akhter, P., Iqbal, J., Ali, Z., Yang, W., Shehzad, N., Majee, D., Sheikh, R., Amjad, U.E.S., and Russob, N. (2017). VOCs photocatalytic abatement using nano-structured titania-silica catalysts. J. Environ. Chem. Eng., 5: 3100-3107.
Jacoby, W.A., Blake, D.M., Noble, R.D., and Koval, C.A. (1995). Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. J. Catal., 157: 87-96.
Ji, J., Xu, Y., Huang, H., He, M., Liu, S., Liu, G., Xie, R., Feng, Q., Shu, Y., Zhan, Y., Fang, R., Ye, X., and Leung, D.Y.C. (2017). Mesoporous TiO2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chem. Eng. J., 327: 490-499.
Jie, S., Xin, Y., Kangle, L., Shuo, S., Kejian, D., and Dongyun, D. (2013). Photocatalytic degradation pathway for Azo Dye in TiO2/UV/O3 system: Hydroxyl radical versus hole. J. Mol. Catal. A: Chem., 367: 31-37.
Jones, A.P. (1999). Indoor air quality and health. Atmos. Environ., 33: 4535-4564.
Kastner, J.R., Buquoi, Q., Ganagavaram, R., and Das, K.C. (2005). Catalytic ozonation ofgaseous reduced sulfur compounds using wood fly ash. Environ. Sci. & Technol., 39: 1835-1842.
Katragadda, H.R., Fullana, A., Sidhu, S., and Carbonell-Barrachina, A.A. (2010). Emissions of volatile aldehydes from heated cooking oils. Food Chem., 120: 59-65.
Ke, Y., Xu, X., Yuan, J., Zhang, R., Fang, S., and Liu, Y. (2009). Correlation between cooking soot PAHs exposure and chefs' DNA oxidative damage. The 5th Annual Conference of the Global Chinese Public Health Association, 10 (in Chinese).
Khezrianjoo, S. and Revanasiddappa, H.D. (2012). Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst. Chem. Sci. J., 3:1-9.
Kumar, R., Abdel-Wahab, M.S., Barakat, M.A., Rashid, J., Salah, N., and Al-Ghamdi, A.A. (2016). Role of N doping on the structural, optical and photocatalytic properties of the silver deposited ZnO thin films. J. Taiwan Inst. Chem. Eng., 6: 131-138.
Kwon, D.W., Seo, P.W., Kim, G.J., and Hong, S.C. (2015). Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity. Appl. Catal. B: Environ., 163: 436-443.
Kwong, C.W., Chao, Y.H., Hui, K.S., and Wan, M.P. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmos. Environ., 42: 2300-2311.
Lam, W.K. (2005). Lung cancer in Asian women - The environment and genes. Respirology., 10: 408-417.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc., 40: 1361-1403.
Levenspiel, O. (1990). Chemical Reaction Engineering, Second Ed. John Wiley & Sons, New Yark.
Liang, W.J., Li, J., and Jin, Y.Q. (2012). Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. and Environ., 51: 345-350.
Li, P.X., Feng, M.Y., Wu, C.P., Li, S.B., Hou, L.T., Ma, J.S., and Yin, C.H. (2015). Study on the photocatalytic mechanism of TiO2 sensitized by Zinc Porphyrin. Acta Physica. Sinica., 64(13): 137601.
Li, Y.H., Li, W.H., Yuan, C.S., Hung, C.H., and Shen, H.Z. (2017). Photoeletrocatalytic degradation of gaseous acetone using electrical glassfiber filter coated with nano-sized TiO2 photoelectrocatalyst. J. Taiwan Inst. Chem. Eng., 77: 187-195.
Litter, M.I. (1999). Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl. Catal. B: Environ., l, 23: 89-114.
Lin, L., Xie, M.N., Liang, Y.M., He, Y.Q., Chan, G.Y.S., and Luan, T.G. (2012). Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment. Food Control., 28: 374-379.
Linsebigler, A.L., Lu, G., and Yates, Jr., J.T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 95: 735-758.
Liu, A. Z. (1996). Study on operation parameters of low concentration of four vinyl chloride in gas phase near UV/TiO2 decomposition. Institute of Environmental Engineering, National Sun Yat-Sen University, Master Thesis.
Liu, T.X., Li, F.B., and Li, X.Z. (2008). TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. J. Hazard. Mater., 152: 347-355.
LÓpez, A., Acosta, D., Martínez, A.I., and Santiago, J. (2010). Nano-structured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technol., 202: 111-117.
LÖfroth, G., Stensman, C., and Brandhorst-Satzkorn, M. (1991). Indoor sources of mutagenic aerosol particulate matter: Smoking, cooking, and incense burning. Mutat. Res. Genet. Toxicol., 261: 21-28.
Lu, S.Y., Wang, Q.L., Buekens, A.G., Yan, J.H., Li, X.D., and Cen, K.F. (2012). Photocatalytic decomposition of gaseous 1,2-dichlorobenzene on TiO2 films: Effect of ozone addition. Chem. Eng. J., 195-196: 233-240.
Luo, Y. and Ollis, D.F. (1996). Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. J. Catal., 163: 1-11.
Matthew, R.W. 1988. Kinetic of photocatalytic oxidation of organic solutesover titanium dioxide. J. Catal., 111: 264-272.
Mills, A. and Hunte, S.L. (1997). An overview of semiconductor photocatalysis. J. Photochem. Photobiol. Chem., 108: 1-35.
Mohan, B., Cui, X., and Chua, K.J. (2017). Development of chemical reaction kinetics of VOC ozonation. Procedia Eng., 180: 1372-1378.
Nimlos, M.R., Wolfrum, E.J., Brewer, M.L., Fennell, J.A., and Bintner, G. (1996). Gas-phase heterogeneous photocatalytic oxidation of ethanol: pathways and kinetic modeling. Environ. Sci. Technol., 30: 3102-3110.
Obee, T.N. and Brown, R.T. (1995). TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. & Technol., 29: 1223-1231.
Obee, T.N. and Hay, S.O. (1997). Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania. Environ. Sci. & Technol., 31: 2034-2038.
Oyama, S.T. (2000). Chemical and catalytic properties of ozone. Catal. Rev. Sci. Eng. 42: 279-322.
Peral, J. and Ollis, D.F. (1992). Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal., 134: 554-565.
Pham, T.D. and Lee, B.K. (2017). Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light. Chem. Eng. J., 307: 63-73.
Peng, C.Y., Lan, C.H., Lin, P.C., and Kuo, Y.C. (2017). Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes. J. Hazard Mater., 324: 160-167.
Qi, H., Sun D.Z., and Chi G.Q. (2007). Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode. J. Environ. Sci., 19: 1136-1140.
Qian, X., Ren, M., Yue D., Zhu Y., Han Y., Bian Z., and Zhao, Y. (2017). Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl. Catal. B: Environ., 212: 1-6.
Raupp, G.B. and Junio, C.T. (1993). Photocatalytic oxidation of oxygenated air toxics. Appl. Surf. Sci., 72: 321-327.
Romaguera, C., Grimalt, F., and Lecha, M. (1981). Occupational purpuric textile dermatitis from formaldehyde resins. Contact Dermatitis, 7: 152-153.
Sano, T., Negishi, N., Mas, D., and Takeuchi, K. (2000). Photocatalytic decomposition of N2O on highly dispersed Ag+ ions on TiO2 prepared by photodeposition. J. Catal., 194: 71-79.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev., 114: 9919-9986.
Sclafain, A., L. Palmisano and M. Schiavello. (1990). Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol aqueous dispersion. J. Phys. Chem. B, 94(2): 829-832.
See, S.W. and Balasubramanian, R. (2006). Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ. Res., 102: 197-204.
Shu, Y., Ji, J., Xu, Y., Deng, J., Huang, H., He, M., Leung Dennis, Y.C., Wu, M., Liu, S., Liu, S., Liu, Xie, R., Feng, Q., Zhan, Y., Fang, R., and Ye, X. (2018). Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Appl. Catal. B Environ., 220: 78-87.
Shun, C.L., Wai, M.L., Lo, and Y.C. (2001). Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Sci. Total Environ., 279: 181-193.
Sofuoglu, S.C., Toprak, M., Inal, F., and Cimrin, A.H. (2015). Indoor air quality in a restaurant kitchen using margarine for deep-frying. Environ. Sci. Pollut. Control Ser., 22: 15703-15711.
Sun, X., Zheng, W., and Zhang, X. (2016). Toxicity and health damage of cooking fume. Ind. Health Occup. Dis., 3: 232-235 (in Chinese).
Tang, A.D., Jia, Y.R., Zhang, S.Y., Yu, Q.M., and Zhang, X.C. (2014). Synthesis, characterization and photocatalysis of AgAlO2/TiO2 heterojunction with sunlight irradiation. Catal. Commun., 50: 1-4.
Tao, H.T., Fan, Y.S., Li, X.Q., Zhang, Z.R., and Hou, W.S. (2015). Investigation of formaldehyde and TVOC in underground malls in Xi’an, China: Concentrations, sources, and affecting factors. Build. and Environ., 85: 85-93.
Wan, M.P., Wu, C.L., To, G.N.S., Chan, T.C., and Chao, C.Y. (2011). Ultrafine particles and PM2.5 generated from cooking in homes. Atmos. Environ., 45: 6141-6148.
Wang, L., Xiang, Z., Stevanovic, S., Ristovski, Z., Salimi, F., Gao, J., Wang, H., and Li, L. (2017). Role of Chinese cooking emissions on ambient air quality and human health. Sci. Total Environ., 589: 173-181.
Wang, K. H., Tuan, H. L., Chang, H. P. (1998). Perception of science teachers' subject teaching in junior high school. Chinese Journal of Science Education, 6(4): NSC-86-2513-s-018-007-sp. 363-381.
Wang, W. and Ku, Y. (2003). Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. J. Photochem. Photobiol., A: Chem., 159: 47-59.
Wang, X., Shi, J., Bai, Z., Kong, S., Zhang, B., and Wu, J. (2011). Measurement of VOCs emissions from cooking in Shenyang city, China population. Resour. Environ., 21(3): 364-366 (in Chinese).
Wu, R., Z. (1985). Introduction to industrial catalysts. Li Ming Cultural Enterprise Co.,Ltd.
Xiong, D., Chang, H., Zhang, Q.Q., Tian, S., Liu, B.S., and Zhao, X.J. (2015). Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci., 347, 747-754.
Xu, H., Li, H., Gu, Z., Xu, Y., Yan, J.,Wu, X., and Zhao, S. (2012). Photocatalytic degradation of methylene blue over AgAlO2 under UV light irradiation. J. Chem. Soc., Pakistan, 34: 371-375.
Xue, Y., Jiang, Y., Jin, S., and Li, Y. (2016). Association between cooking oil fume exposure and lung cancer among Chinese non-smoking women: A meta-analysis. Onco Targets Ther., 9: 2987-2992.
Yi, M. (2017). What kinds of diseases do chefs easy to suffer? Occup. Health, 436: 35-36 (in Chinese).
Yuan, C.S. (1995). The current status of indoor air quality investigation and management in Taiwan. presented at the 88th Air and Waste Management Association Annual Meeting, San Antonio, Texas.
Yuan, J., Huang, X., Chen, M., Shi, J., and Shangguan, W. (2013). Ozone-assisted photo-catalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M-Zn, Cu, Mn). Catal. Today, 201: 182-188.
Yu, K.P. and Lee, G.W.M. (2007). Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3). Appl. Catal. B Environ., 75: 29-38.
Yu, K.P., Lee W.M., and Lin, G.Y., (2014). Removal of low-concentration formaldehyde by a fiber optic illuminated honeycomb monolith photocatalytic Reactor. Aerosol Air Qual. Res. 15: 1008–1016.
Yu, K.P., Yang, K.R., Chen, Y.C., Gong, J.Y., Chen, Y.P., Shih, H.C., and Lung, S.C. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Build. and Environ., 93: 258-266.
Yun, H.N., Akihide, I., Akihiko, K. and Rose, A. (2010). Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem., 17: 2607-2612.
Zeliger, H.I. (2011). 12-Sick Building Syndrome. Human Toxicology of Chemical Mixtures. Second Ed., 143-158.
Zhang, N., Han, B., He, F., Xu, J., Zhao, R., Zhang, Y., and Bai, Z. (2017). Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ. Pollut., 227: 24-30.
Zhang, P.Y., Liang, F.Y., Yu, G., Chen, Q., and Zhu, W.P. (2003). A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J. Photochem. Photobiol., A: Chem., 156: 189-194.
Zhang, P. and Liu, J. (2004). Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. J. Photochem. Photobiol., A: Chem., 167: 87-94.
Zhu, X., Wang, K., and Koga, M. (2001). Food-derived mutagens and carcinogens in the food and carcinogens. Canc. Res. (Suppl.), 52: 2092s-2098s.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code